Summarizing Cardiac Data: An Automated Approach for Identifying Representative Heartbeats in the Clinical Setting
总结心脏数据:在临床环境中识别代表性心跳的自动方法
基本信息
- 批准号:10515222
- 负责人:
- 金额:$ 37.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-02 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdultAlgorithm DesignAlgorithmsArchitectureAreaArrhythmiaAttentionAutomated Clinical Decision SupportCardiacCardiac healthCaringChildhoodClassificationClinicalClinical DataCollaborationsCommunitiesComputerized Medical RecordCoupledDataData AnalysesData ScienceData SetDetectionDevelopmentElectrocardiogramElectrodesFutureGoalsHospitalsHourHumanInterdisciplinary StudyLeadLearningLiteratureMathematicsMedicalMedicineMethodsModelingMonitorMorphologic artifactsMorphologyMovementNoiseOklahomaOutputPathologyPatient-Focused OutcomesPatientsPediatric HospitalsPhysiologicalPopulationProcessRecording of previous eventsResearchResearch PersonnelSchemeSeriesSignal TransductionSinusStreamStructureStudentsTechniquesTexasTimeTrainingUniversitiesVariantWorkautoencoderbiomedical informaticscardiac intensive care unitclinical decision supportclinical decision-makingcollegecostdeep learningdeep learning algorithmexperienceexperimental studyheart rhythmimprovedinnovationinsightinterestmathematical modelmetropolitannovelpatient health informationpatient populationpediatric patientsprediction algorithmpredictive modelingstatisticssupport toolstrustworthinessundergraduate student
项目摘要
Project Summary/Abstract
With a constant stream of patient data generated at the hospital bedside, clinicians are asked to interpret this
data along with patient medical records and lab results in real time. The proposed project offers an approach to
automated clinical decision support (CDS) in parsing through some of this abundant data, focusing on the time
series summarization (TSS) of the electrocardiogram (ECG) and approximations to the related vectorcardiogram
(VCG) using techniques at the interface of data science and applied mathematics. Given the fact that bedside
monitor signals can be corrupted by noise, it is important to distinguish between noise/artifact, cardiac
arrhythmia, and normal cardiac rhythms; while the literature approaching such issues is growing, there is still a
need for addressing this problem for the pediatric population – especially for pediatric patients with electrical
conduction abnormalities as seen in the Cardiac Intensive Care Unit (CICU). Through collaboration between
investigators at the University of Central Oklahoma (UCO) and at Baylor College of Medicine and Texas
Children’s Hospital (TCH), this project combines the application of deep learning algorithms and subset selection
techniques such as the discrete empirical interpolation method (DEIM) to classify and summarize data recorded
from the pediatric CICU at TCH. Specifically, the objective of this project is two-fold: (1) apply variational
autoencoders (VAEs) to differentiate between noise, arrhythmias, and normal sinus rhythm, and (2) evaluate
both existing and newly developed subset selection algorithms, with an added emphasis on DEIM-related
methods in application to cardiac data. Undergraduate students at UCO will evaluate VAE architectures for noise
detection, performing model selection and then applying the chosen model to patient data for further analysis.
Additional VAE models will be trained and selected for recognizing ECG and VCG waveforms containing
pathologies. VAE results will be compared to those generated using existing methods in the literature and will
inform the subsequent summarization of patient data. While DEIM has demonstrated viability in class-
identification tasks in prior work, DEIM and its related methods were originally developed for applications such
as mathematical model reduction, not class identification. For this reason, students will perform a necessary
comparison of DEIM-related methods applied to a variety of data types, giving particular attention to experiments
involving ECG waveforms; while doing so, students will also develop a novel extension of such methods tailored
to this specific medical context. In addition, the comparison of these techniques for class identification purposes
will offer valuable insight regarding DEIM-related methods to both the larger biomedical informatics and data
science communities. Once established, this TSS framework will provide a means of presenting to clinicians a
representation of a patient’s recent cardiac health history, information that can be used as-is and as input to
other predictive models. If met, this long-term goal will provide CDS toward improving patient outcomes while
giving undergraduate students an opportunity to participate in innovative interdisciplinary research.
项目总结/摘要
随着医院床边不断产生的患者数据流,临床医生被要求解释这一点
数据沿着患者医疗记录和实验室结果在真实的时间。拟议的项目提供了一种方法,
自动化临床决策支持(CDS)在分析这些丰富的数据,重点是时间
心电图(ECG)的系列摘要(TSS)和相关心电向量图的近似值
(VCG)使用数据科学和应用数学的接口技术。考虑到床边
监护仪信号可能被噪声破坏,因此区分噪声/伪影、心脏
心律失常和正常的心律;虽然接近这些问题的文献越来越多,但仍然存在一个
需要解决儿科人群的这个问题-特别是对于患有电气疾病的儿科患者
心脏重症监护室(CICU)中观察到的传导异常。通过合作,
中央俄克拉荷马州大学(UCO)、贝勒医学院和得克萨斯州的研究人员
儿童医院(TCH),这个项目结合了深度学习算法和子集选择的应用
离散经验插值法(DEIM)等技术对记录的数据进行分类和汇总
儿科重症监护室送来的具体而言,本项目的目标是双重的:(1)应用变分
自动编码器(VAE),以区分噪声、心律失常和正常窦性心律,以及(2)评估
现有的和新开发的子集选择算法,重点是DEIM相关的
应用于心脏数据的方法。UCO的本科生将评估VAE架构的噪声
检测,执行模型选择,然后将所选择的模型应用于患者数据以进行进一步分析。
将训练和选择额外的VAE模型,用于识别ECG和VCG波形,
病理学。VAE结果将与文献中使用现有方法生成的结果进行比较,
通知后续的患者数据汇总。虽然DEIM在课堂上展示了可行性-
在先前的工作中,DEIM及其相关方法最初是为以下应用开发的,
作为数学模型简化,而不是类识别。为此,学生将进行必要的
比较DEIM相关方法应用于各种数据类型,特别注意实验
涉及心电图波形;同时,学生还将开发一种新的扩展这种方法量身定制
这个特定的医学背景。此外,比较这些技术用于类别识别的目的
将为更大的生物医学信息学和数据提供有关DEIM相关方法的宝贵见解
科学界。一旦建立,该TSS框架将提供一种向临床医生呈现
患者最近的心脏健康史的表示,可以原样使用和作为输入的信息,
其他预测模型。如果实现,这一长期目标将为改善患者结局提供CDS,
让本科生有机会参与创新的跨学科研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily Hendryx Lyons其他文献
Emily Hendryx Lyons的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 37.54万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 37.54万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 37.54万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 37.54万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 37.54万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 37.54万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.54万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 37.54万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.54万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 37.54万 - 项目类别:
Research Grant