Deep Analysis of Brain Chemistry at Enhanced Spatial and Temporal Resolution using Microscale Sampling and Analysis
使用微尺度采样和分析以增强的时空分辨率深入分析脑化学
基本信息
- 批准号:10515445
- 负责人:
- 金额:$ 140.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAreaBRAIN initiativeBehavioral ModelBiological AssayBlood CirculationBrainBrain ChemistryBrain DiseasesCaliberCell MaintenanceCell physiologyCellsChemicalsChronicComplementComplexConcentration measurementCoupledCouplingDisadvantagedDiseaseEnergy SupplyExtracellular SpaceGlutamatesGlutamineGoalsImmunoassayIn SituLengthLipidsLiquid substanceLocationMass Spectrum AnalysisMeasurementMeasuresMental disordersMetabolicMetabolic PathwayMethodsMicrodialysisModernizationMonitorNeurogliaNeuronal DifferentiationNeuronsNeurotransmittersOrganPhysiologicalProductionProteinsProtocols documentationPsyche structureReportingResolutionSamplingSocietiesSourceSpecificitySpectrometry, Mass, Electrospray IonizationStable Isotope LabelingSystemTechniquesTechnologyTestingTimeWorkanalytical methodbasebehavioral phenotypingbrain cellcapillary liquid chromatographydesignexperimental studygamma-Aminobutyric Acidimplanted sensorimprovedin vivoin vivo monitoringinstrumentinstrumentationmental statemetabolomemetabolomicsnanolitrenervous system disorderneurochemistryneurotransmitter releasenoveloperationprototypepublic health relevancereceptorsensorsmall moleculestable isotopetemporal measurementtoolultra high resolution
项目摘要
The objective of this project is to develop new bioanalytical methods for exploring brain chemistry dynamics in vivo. Monitoring the concentration dynamics of neurochemicals in vivo is vital for studying brain function, diseases, and treatments. A versatile approach for in vivo monitoring of brain chemistry is to couple sampling methods, such as microdialysis, to analytical measurements. Primary advantages of the sampling methods relative to other tools, such as sensors, are the ability to perform continuous measurements over time, measure a wide variety of chemicals, and potential for metabolic tracing; however, these potential advantages are underdeveloped. The disadvantages of the method are the poor temporal and spatial resolution. Temporal resolution is limited by the time required to collect enough samples for analysis while spatial resolution is limited by the probe size. In this project, we will develop technology to overcome these limitations. Further, the strengths will be developed and the unique capabilities to address the needs of the Brain Initiative. To facilitate long-term measurements at the high spatial resolution, novel microfabricated sampling probes will be developed that allow measurements at the scale of just a few cells. To improve temporal resolution, instrumentation for coupling fast assays based on mass spectrometry and proximity immunoassay to the new sampling probes will be developed. These methods will allow continuous measurement of neurotransmitters, metabolites, and proteins in real-time with 1 s temporal resolution. A second aim is to develop metabolomics, i.e. measurement of the full complement of lipids and metabolites present, for samples collected from the brain extracellular space in vivo. For this aim, ultra-high-resolution capillary liquid chromatography coupled to mass spectrometry will be developed to analyze the metabolome present in probe samples. This method will allow the chemical milieu of the brain extracellular space to be characterized in unprecedented detail over time and at specific brain locations. In this way, it will be possible to discover chemicals and metabolic pathways that govern different mental and disease states. A third aim will be to use stable-isotope tracing to detect the neuronal pool of glutamate and GABA, the primary neurotransmitters in the brain. These chemicals have multiple cellular sources so previous studies have been limited in understanding if detected changes in concentration were due to neuronal function of other cell activities. This capability will allow a new understanding of the dynamics of these neurotransmitters, which are involved in a myriad of brain functions.
本计画的目的是发展新的生物分析方法,以探索活体脑化学动力学。监测体内神经化学物质的浓度动态对于研究大脑功能、疾病和治疗至关重要。一种用于脑化学的体内监测的通用方法是将采样方法(例如微透析)与分析测量相结合。相对于其他工具(如传感器),采样方法的主要优点是能够随时间进行连续测量,测量各种化学品,以及代谢追踪的潜力;然而,这些潜在的优势尚未开发。该方法的缺点是时间和空间分辨率差。时间分辨率受到收集足够样本进行分析所需时间的限制,而空间分辨率受到探针大小的限制。在这个项目中,我们将开发技术来克服这些限制。此外,将发展优势和独特的能力,以满足人才倡议的需要。 为了促进高空间分辨率的长期测量,将开发新型微加工采样探针,允许仅在几个细胞的规模上进行测量。为了提高时间分辨率,将开发用于将基于质谱法和邻近免疫测定法的快速测定与新的采样探针相结合的仪器。这些方法将允许连续测量神经递质,代谢物和蛋白质的实时1秒的时间分辨率。第二个目标是开发代谢组学,即测量从体内脑细胞外空间收集的样本中存在的脂质和代谢物的全部补充。为此,将开发超高分辨率毛细管液相色谱-质谱联用技术,以分析探针样品中存在的代谢物组。这种方法将允许大脑细胞外空间的化学环境随着时间的推移和在特定的大脑位置以前所未有的细节来表征。通过这种方式,将有可能发现控制不同精神和疾病状态的化学物质和代谢途径。第三个目标将是使用稳定同位素示踪来检测谷氨酸和GABA的神经元库,这是大脑中的主要神经递质。这些化学物质具有多种细胞来源,因此先前的研究在理解检测到的浓度变化是否是由于其他细胞活动的神经元功能方面受到限制。这种能力将使人们对这些神经递质的动力学有一个新的理解,这些神经递质参与了无数的大脑功能。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Indolethylamine N-methyltransferase (INMT) is not essential for endogenous tryptamine-dependent methylation activity in rats.
- DOI:10.1038/s41598-023-27538-y
- 发表时间:2023-01-06
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Advances in coupling droplet microfluidics to mass spectrometry.
- DOI:10.1016/j.copbio.2023.102962
- 发表时间:2023-06
- 期刊:
- 影响因子:7.7
- 作者:Bridget E. Murray;Laura I Penabad;R. T. Kennedy
- 通讯作者:Bridget E. Murray;Laura I Penabad;R. T. Kennedy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT T KENNEDY其他文献
ROBERT T KENNEDY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT T KENNEDY', 18)}}的其他基金
New Technology for In Vivo Monitoring the Brain Extracellular Proteome at High Spatial Resolution in Substance Abuse Models
在药物滥用模型中以高空间分辨率体内监测脑细胞外蛋白质组的新技术
- 批准号:
10584195 - 财政年份:2023
- 资助金额:
$ 140.4万 - 项目类别:
Microfluidic Systems to Enable Enzyme Engineering for Chemical Synthesis
微流体系统使酶工程能够用于化学合成
- 批准号:
10715356 - 财政年份:2023
- 资助金额:
$ 140.4万 - 项目类别:
High throughput mass spectrometry and electrophoresis assay systems
高通量质谱和电泳分析系统
- 批准号:
8340559 - 财政年份:2012
- 资助金额:
$ 140.4万 - 项目类别:
High throughput mass spectrometry and electrophoresis assay systems
高通量质谱和电泳分析系统
- 批准号:
8545872 - 财政年份:2012
- 资助金额:
$ 140.4万 - 项目类别:
High throughput mass spectrometry and electrophoresis assay systems
高通量质谱和电泳分析系统
- 批准号:
8925093 - 财政年份:2012
- 资助金额:
$ 140.4万 - 项目类别:
Design and use of methods for peptide secretion studies
肽分泌研究方法的设计和使用
- 批准号:
8010457 - 财政年份:2010
- 资助金额:
$ 140.4万 - 项目类别:
PROJECT 2; CHEMICAL SAMPLING AND ANALYSIS OF BRAIN EXTRACELLULAR FLUID
项目2;
- 批准号:
7100706 - 财政年份:2005
- 资助金额:
$ 140.4万 - 项目类别:
Microfluidics in Biomedical Sciences Training Program
生物医学科学中的微流控培训计划
- 批准号:
7673493 - 财政年份:2005
- 资助金额:
$ 140.4万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 140.4万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 140.4万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 140.4万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 140.4万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 140.4万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 140.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 140.4万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 140.4万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 140.4万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 140.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists