Mechanisms of Target of Rapamycin Complex 1 Dependent Epigenetic Regulation
雷帕霉素复合物1依赖的表观遗传调控靶点机制
基本信息
- 批准号:10515603
- 负责人:
- 金额:$ 30.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcetylationAddressAffectArchitectureBindingBiochemicalCell DeathCell NucleusCell ProliferationCell SurvivalCellsChIP-seqChromatinChromatin StructureComplexCoupledCritical PathwaysCytoplasmDeacetylaseDiseaseEngineeringEnvironmentEpigenetic ProcessFRAP1 geneFutureGene ExpressionGenesGeneticGenetic ScreeningGenetic TranscriptionGenomic approachGoalsHMGB ProteinsHMGB1 geneHealthHistone AcetylationHistone DeacetylaseHistone H3Histone H4HistonesHomeostasisHomologous GeneHumanImmune signalingIn VitroIndividualInflammationKnowledgeLibrariesLinkLysineMalignant NeoplasmsMetabolicMetabolic ControlMetabolismMitochondriaModelingNutrientObesityOutcomePathologicPathway interactionsPeptidesPhenotypePost-Translational Protein ProcessingProcessProteinsProteomicsReaderRegulationRoleSignal PathwaySignal TransductionSirolimusSirtuinsSiteStressTestingTranscriptional RegulationWorkYeast Model SystemYeastsanalogcell growthchemical geneticsepigenetic regulationepigenomegenetic analysishistone modificationinhibitormutantnovelpreventsuccesstumorigenesis
项目摘要
Project Summary
Environmental nutrient availability and metabolism profoundly affects an individual’s health, while deregulation
of nutrient signaling contributes to many diseases, including cancer. Nutrient signaling and metabolism
regulate the epigenome to affect cellular phenotype and function, yet mechanisms explaining how nutrients
signal to the epigenome are lacking. Defining these mechanisms constitutes a critical scientific problem that is
essential to address. By defining these mechanisms, we will understand how nutrient exposures affect health,
and how aberrant nutrient signaling causes disease. The mechanistic target of rapamycin complex 1
(mTORC1) is an evolutionarily conserved nutrient activated signaling pathway. MTORC1 responds to diverse
nutrient and metabolic inputs to promote cell growth and proliferation, and it is deregulated in cancer and other
diseases. While mTORC1 is an emerging epigenetic regulator, how it signals to the epigenome is unknown. In
this project, we will use a yeast model to build on our previous successes to define these mechanisms. Herein,
we will test the overarching hypothesis that TORC1 signaling controls the chromatin binding of architectural
proteins and histone reader proteins that maintain viability during nutrient stress and regulate metabolic gene
expression. In Aim I, we will identify specific epigenetic pathways acting on histone H3 that promote binding of
high mobility group box (HMGB) proteins to chromatin to prevent cell death under nutrient stress conditions.
We then will define biochemically and genetically how non-chromatin bound HMGB proteins cause cell death
during TORC1 stress. Stressed human cells evict HMGB1 from chromatin to affect cytoplasmic metabolic
activities, initiate innate immune signaling and inflammation, and promote tumorigenesis. These yeast studies
will identify conserved epigenetic pathways that are critical for retaining HMGB1 on chromatin during mTORC1
stress to prevent such HMGB1-induced pathological effects. Aim II will use proteomic and genomic
approaches to define how yeast TORC1 represses conserved sirtuin histone deacetylase activity to regulate
histone reader chromatin binding and control mitochondrial metabolic transcription. We then will perform
mechanistic studies to assess how these histone reader proteins transcriptionally regulate metabolic gene
expression. By the project’s conclusion, we will have defined novel and conserved mechanisms used by
TORC1 to modify the epigenome, which prevent cell death during nutrient stress and regulate metabolic gene
transcription. These mechanisms will be directly relevant for understanding how human mTORC1 deregulation
alters the epigenome to cause disease.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronald Laribee其他文献
Ronald Laribee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronald Laribee', 18)}}的其他基金
Mechanisms of Target of Rapamycin Complex 1 Dependent Epigenetic Regulation
雷帕霉素复合物1依赖的表观遗传调控靶点机制
- 批准号:
10653258 - 财政年份:2022
- 资助金额:
$ 30.8万 - 项目类别:
Endolysosomal-nuclear communication mediated through V-ATPase and NHE9 dependent epigenetic signaling
通过 V-ATP 酶和 NHE9 依赖的表观遗传信号介导的内溶酶体-核通讯
- 批准号:
9759328 - 财政年份:2019
- 资助金额:
$ 30.8万 - 项目类别:
Mechanisms of transcription coregulator usage by the target of rapamycin pathway
雷帕霉素通路靶标使用转录共调节因子的机制
- 批准号:
9109664 - 财政年份:2013
- 资助金额:
$ 30.8万 - 项目类别:
Mechanisms of transcription coregulator usage by the target of rapamycin pathway
雷帕霉素通路靶标使用转录共调节因子的机制
- 批准号:
8552300 - 财政年份:2013
- 资助金额:
$ 30.8万 - 项目类别:
Role of Histone H3 Lysine 36 Methylation in Chromatin
组蛋白 H3 赖氨酸 36 甲基化在染色质中的作用
- 批准号:
7050183 - 财政年份:2005
- 资助金额:
$ 30.8万 - 项目类别:
Role of Histone H3 Lysine 36 Methylation in Chromatin
组蛋白 H3 赖氨酸 36 甲基化在染色质中的作用
- 批准号:
6883418 - 财政年份:2005
- 资助金额:
$ 30.8万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 30.8万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 30.8万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 30.8万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 30.8万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 30.8万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 30.8万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 30.8万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 30.8万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 30.8万 - 项目类别:
Research Grant














{{item.name}}会员




