3D printed, multi-material microfluidic calorimetry: Critical tools to study protein stability
3D 打印多材料微流体量热法:研究蛋白质稳定性的关键工具
基本信息
- 批准号:10514227
- 负责人:
- 金额:$ 40.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAffinityAmyloidAmyloid FibrilsAmyloid ProteinsAmyloid beta-ProteinAmyloidosisApolipoprotein A-IBehaviorBindingBiochemistryBuffersCalorimetryCeramicsChemicalsComplexCopperCustomDataDevicesDiagnosisDiseaseDissociationEdetic AcidElementsEntropyEquipmentFiberGenerationsGoalsGoldGrantGrowthHIVInjectableInjectionsInkKnowledgeLaboratoriesLeadLifeLightLiquid substanceMeasurementMeasuresMetalsMethodsMicrofluidic MicrochipsMicrofluidicsMicroscopicMoldsMole the mammalMuramidaseNoiseOutcomePartner in relationshipPathogenicityPerformancePetroleumPharmacologyPhase TransitionPlant ResinsPolymersPrintingProcessProductionPropertyProteinsPumpQuantum DotsReaction TimeReagentResearchResolutionRoleSamplingScanningSeriesStructureSystemTechniquesTechnologyTemperatureTestingTherapeuticThermal ConductivityThermodynamicsTissuesTitrationsTransition TemperatureUnited States National Institutes of HealthWorkamyloid peptidechelationdensitydesigndigitalelectronic sensorenthalpyexperienceexperimental studyimprovedinhibitorinnovative technologiesmeltingmetallicitymicrocalorimetryminiaturizenew technologyparticlepolymerizationpreventprotein foldingprotein structurereceptorsensortool
项目摘要
Project Summary
This proposal aims to revolutionize the micro-calorimetry field by miniaturizing an adiabatic
scanning calorimeter (ASC) to improve the accuracy of thermodynamic data of protein unfolding.
Unlike the thousands of existing microscopic-DSCs (differential scanning calorimeters), a micro-
ASC does not have to sacrifice accuracy for sensitivity during phase transitions, and actually
improves in accuracy as the scan approaches a phase transition. This is particularly important as
micro-calorimetry is the gold standard to provide experimental measurements of enthalpy, binding
affinity, and heat capacity to calculate the entropy and Gibbs energy of protein structural changes.
The significance of the proposed work is it will produce a suite of tools that can increase the pace
of pharmacological and biological chemistry discoveries, by understanding the fundamental role
thermodynamics has in disease occurrence, diagnosis, and treatment.
Recent advancements in 3D printing of microfluidic devices can remove the roadblocks that have
prevented taking advantage of ASC’s benefits when studying protein folding/unfolding and
stability. Aim 1 will build on our previous experience with both 3D printing and injecting liquid
materials to improve the capabilities of microfluidic devices by making micro-ASC devices. We
will design a series of printed calorimeter sections using our custom digital light project
stereolithography (DLP-SL) 3D printer. Each printed section can then be modified after printing
to achieve a different function, including but not being limited to: (1) casting molds to make metallic
enclosures, a thermoelectric generator composed of injectable materials, and (3) low thermal
conductivity aerogel impregnated resins. Then, because the printer can print internal features as
small as 7𝜇𝑚, we can make sure each section has a barb and a mating receptor to allow the
different printed sections to be assembled together into a calorimeter. Aim 2 will use these
functionalized sections to create the adiabatic conditions, low thermal conductance, low thermal
noise, and high sensitivities needed for both a micro-ASC and a micro-ITC (isothermal titration
calorimeter) on the same microfluidic platform. Aim 3 will use the micro-ASC/ITC devices to
measure the unfolding dynamics of two amyloid proteins, amyloid-𝛽 (A𝛽) and lysozyme. This will
show that the technology is suitable for improved thermodynamic measurements and can be
applied to other protein systems. The overall objective of this study is develop a series of devices
that can be widely accessible, and then use those tools to measure the fundamental
thermodynamic behavior that dictates the stability of key amyloid proteins that can cause disease.
项目摘要
该提案旨在通过将绝热的微热量测量方法应用于微热量测量领域,
扫描量热仪(ASC),以提高蛋白质去折叠的热力学数据的准确性。
与现有的数千种显微DSC(差示扫描量热仪)不同,
ASC在相变期间不必牺牲灵敏度的准确性,实际上
随着扫描接近相变,精度提高。这一点尤其重要,因为
微量量热法是提供焓、结合、结合和/或结合的实验测量的黄金标准。
亲和力和热容来计算蛋白质结构变化的熵和吉布斯能。
这项工作的重要性在于,它将产生一套工具,
药理学和生物化学的发现,通过了解
热力学在疾病发生、诊断和治疗中的作用。
微流体设备3D打印的最新进展可以消除
在研究蛋白质折叠/解折叠时,
稳定Aim 1将建立在我们之前在3D打印和注射液体方面的经验基础上
材料,以通过制造微ASC装置来改善微流体装置的能力。我们
我将设计一系列印刷热量计部分使用我们的定制数字光项目
立体光刻(DLP-SL)3D打印机。每个打印部分可以在打印后进行修改
以实现不同的功能,包括但不限于:(1)铸造模具,以使金属
外壳,由可注射材料组成的热电发电机,以及(3)低热
导电气凝胶浸渍树脂。然后,由于打印机可以将内部特征打印为
小到7厘米,我们可以确保每个部分都有一个倒钩和一个交配受体,
不同的打印部分组装成一个热量计。目标2将使用这些
功能化的部分,以创建绝热条件,低热导率,低热
噪声,以及微型ASC和微型ITC(等温滴定)所需的高灵敏度
量热计)在相同的微流体平台上。Aim 3将使用微型ASC/ITC设备,
测量两种淀粉样蛋白,淀粉样蛋白酶(Aβ)和溶菌酶的解折叠动力学。𝛽这将
表明该技术适用于改进的热力学测量,
适用于其他蛋白质系统。本研究的总体目标是开发一系列设备
可以被广泛使用,然后使用这些工具来测量基本的
热力学行为决定了可能导致疾病的关键淀粉样蛋白的稳定性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Troy Munro其他文献
Troy Munro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Troy Munro', 18)}}的其他基金
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 40.49万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 40.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 40.49万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 40.49万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 40.49万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 40.49万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 40.49万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 40.49万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 40.49万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 40.49万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 40.49万 - 项目类别:
Standard Grant