Dealing with antibiotic resistance: antisense technology
应对抗生素耐药性:反义技术
基本信息
- 批准号:10514492
- 负责人:
- 金额:$ 42.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-06-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoV3-DimensionalAcetylationAcetyltransferaseAcinetobacter baumanniiAdjuvantAmikacinAminoglycoside resistanceAminoglycosidesAntibiotic ResistanceAntibioticsAntisense TechnologyBacteriaBacterial Antibiotic ResistanceBacterial InfectionsBindingBiological AssayBiological ModelsCOVID-19 pandemicCaringCause of DeathCellsCellular StructuresCenters for Disease Control and Prevention (U.S.)CharacteristicsChemicalsChronic DiseaseClinicalCombined Modality TherapyCommunicable DiseasesComplementComplexDentalDeoxyribonucleotidesDevelopmentDrug Administration RoutesDrug resistanceEffectivenessEnterobacter cloacaeEnzyme KineticsEnzymesEscherichia coliExposure toFormulationFundingGenerationsGenesGenotypeGoalsGram-Negative Aerobic BacteriaGrowth InhibitorsHealthHealth Care CostsImpairmentIn VitroInfectionInfection preventionInfluenza A Virus, H1N1 SubtypeInvertebratesIonophoresIonsKlebsiella pneumoniaeLibrariesLifeMediatingMedicalMessenger RNAModelingMulti-Drug ResistanceMultiple Bacterial Drug ResistanceNucleic AcidsOligonucleotidesOperative Surgical ProceduresOralOrgan TransplantationPatientsPeptide HydrolasesPeptidesPersonsPharmaceutical PreparationsPharmacologyPositioning AttributePredispositionPremature InfantProceduresPseudomonas aeruginosaRNase PReactionRecoveryResearchResistanceRouteScanningStructureStructure-Activity RelationshipTechnologyTestingTimeTranslationsTreatment CostTreatment EfficacyTreatment FailureWaterWorkWorld Health OrganizationZincanalogantimicrobialbacterial resistancebasecancer therapyco-infectioncombinatorialcostdesigndisabilitydivalent metalexperimental studygenetic inhibitorimprovedinhibitorminimal inhibitory concentrationnovelnovel therapeuticsnucleasenucleic acid analogpathogenpreservationpreventpublic health emergencyresistant strainscaffoldscreeningsmall molecule inhibitorsynergismtoolwater solubilitywater testing
项目摘要
Project Summary/Abstract
Bacterial infections are a leading cause of death, compromised health, and disability. Unfortunately, we are
currently witnessing an increase in multiresistant infections and a decrease in the development of new
antimicrobials. Consequently, the treatment costs are increasing, and a growing number of patients are
succumbing to these infections. Furthermore, the increase in hard-to-treat or even untreatable bacteria also
compromises medical procedures such as treatment of cancer and other chronic diseases, surgery, organ
transplants, dental work, and care for premature infants. Compounding the problem, since SARS-CoV-2
coinfection with multidrug resistant bacteria has already been documented, the COVID-19 pandemic could
accelerate the rise in antibiotic resistance by increasing patient exposure to antimicrobials. A solution to the
antibiotic resistance problem could be the continuous development of new classes of antimicrobials. However,
this route is slow and costly and needs to be complemented with other strategies. This proposal responds to
this need and concentrates on searching strategies to extend the useful life of currently available drugs. The
aminoglycoside 6′-N-acetyltransferase type Ib [AAC(6′)-Ib] is responsible for most cases of resistance to
amikacin (Ak) and other aminoglycosides in Gram-negative pathogens. The dissemination of the aac(6′)-Ib
gene among these pathogens erodes the efficacy of these antibiotics, which are an important component of
the armamentarium against severe infections. The long-term goal of this research is to develop compounds
that reduce Ak resistance to susceptibility levels and can be used as adjuvants to treat Ak-resistant infections.
Specific aim 1 of this project proposes to optimize the structure of cell-penetrating peptides (CPP) bound to
oligonucleotide analogs, known as external guide sequences (EGSs), that bind a complementary region of the
aac(6′)-Ib mRNA and form a substrate for RNase P, which cleaves the mRNA preventing translation. The
planned experiments consist of designing protease-resistant CPPs that maximize internalization and testing
chimeric oligomers composed of deoxyribonucleotides and the newest generation of bridge nucleic acids.
Specific Aim 2 will identify small molecule inhibitors of the AAC(6′)-Ib using combinatorial libraries and optimize
them by structure-activity relationship analysis. This Specific aim also proposes to design water-soluble
ionophores that in complex with zinc ions are strong inhibitors of the enzymatic inactivation of Ak. Specific aim
3 consists of testing the effect of Ak in association with combinations of the different compounds identified in
the previous specific aims on Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii model
strains using three-dimensional checkerboard assays, time-kill assays, and treatment of infections in the
Galleria mellonella infection model. The most promising combinations will then be tested on about 100
genotypically well-defined K. pneumoniae, A. baumannii, Pseudomonas aeruginosa, and Enterobacter cloacae
clinical isolates.
项目摘要/摘要
细菌感染是死亡,健康损害和残疾的主要原因。不幸的是,我们是
目前目睹了多次抗感染的增加,而新的发展也有所减少
抗菌剂。因此,治疗成本正在增加,越来越多的患者是
屈服于这些感染。此外,难以治疗甚至不可治疗的细菌的增加
妥协医疗程序,例如治疗癌症和其他慢性疾病,手术,器官
移植,牙科工作和对早产婴儿的护理。复杂问题,因为SARS-COV-2
与多药耐药细菌的共同感染已经记录在案,Covid-19大流行可能
通过增加患者暴露于抗菌剂的情况来加快抗生素耐药性的升高。解决方案
抗生素耐药性问题可能是新类抗菌药物的持续发展。然而,
这条路线缓慢而昂贵,需要通过其他策略来完成。此提案回应
这种需求并集中于搜索策略,以延长当前可用药物的使用寿命。
氨基糖苷6'-N-乙酰转移酶类型IB [AAC(6')-IB]负责大多数抗性的情况
革兰氏阴性病原体中的amikacin(AK)和其他氨基糖苷。 AAC(6')-IB的传播
这些病原体中的基因侵蚀了这些抗生素的效率,这是
反对严重感染的武术。这项研究的长期目标是开发化合物
这降低了AK对敏感性水平的抗性,可以用作治疗AK耐药感染的调节器。
该项目的特定目的1提案,以优化与细胞穿透辣椒(CPP)结构的结构
寡核苷酸类似物,称为外部指南序列(EGSS),结合了整个区域
AAC(6') - Ib mRNA并形成RNase P的底物,该酶P裂解了mRNA阻止翻译的mRNA。这
计划的实验包括设计抗蛋白酶的CPP,以最大化内在化和测试
由脱氧核糖核苷酸和最新一代的桥核酸组成的嵌合寡聚物。
特定目标2将使用组合库鉴定AAC(6') - IB的小分子抑制剂并优化
它们通过结构活动关系分析。该特定目的还建议设计水溶性
与锌离子复合物中的离子载是AK酶失活的强抑制剂。具体目标
3包括测试AK的效果以及与在
先前针对大肠杆菌,克雷伯氏菌和鲍曼尼杆菌模型的特定目标
使用三维棋盘测定法,时间杀害测定和感染治疗的菌株
Galleria Mellonella感染模型。然后,最有希望的组合将在大约100次上进行测试
基因型定义明确的K.肺炎,A。Baumannii,铜绿假单胞菌和肠杆菌cloacae
临床分离株。
项目成果
期刊论文数量(71)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inhibition of cell division induced by external guide sequences (EGS Technology) targeting ftsZ.
- DOI:10.1371/journal.pone.0047690
- 发表时间:2012
- 期刊:
- 影响因子:3.7
- 作者:Sala CD;Soler-Bistué AJ;Korprapun L;Zorreguieta A;Tolmasky ME
- 通讯作者:Tolmasky ME
Aminoglycoside modifying enzymes.
- DOI:10.1016/j.drup.2010.08.003
- 发表时间:2010-12
- 期刊:
- 影响因子:24.3
- 作者:Ramirez, Maria S.;Tolmasky, Marcelo E.
- 通讯作者:Tolmasky, Marcelo E.
Role of Xer site-specific recombination in the genesis of pJHCMW1: an evolutionary hypothesis.
Xer 位点特异性重组在 pJHCMW1 发生中的作用:进化假设。
- DOI:10.1016/j.jgar.2023.07.017
- 发表时间:2023
- 期刊:
- 影响因子:4.6
- 作者:Traglia,German;Ramirez,MariaSoledad;Tolmasky,MarceloE
- 通讯作者:Tolmasky,MarceloE
Whole-Genome Comparative Analysis of Two Carbapenem-Resistant ST-258 Klebsiella pneumoniae Strains Isolated during a North-Eastern Ohio Outbreak: Differences within the High Heterogeneity Zones.
- DOI:10.1093/gbe/evw135
- 发表时间:2016-07-03
- 期刊:
- 影响因子:3.3
- 作者:Ramirez MS;Xie G;Traglia GM;Johnson SL;Davenport KW;van Duin D;Ramazani A;Perez F;Jacobs MR;Sherratt DJ;Bonomo RA;Chain PS;Tolmasky ME
- 通讯作者:Tolmasky ME
Rise and dissemination of aminoglycoside resistance: the aac(6')-Ib paradigm.
- DOI:10.3389/fmicb.2013.00121
- 发表时间:2013
- 期刊:
- 影响因子:5.2
- 作者:Ramirez MS;Nikolaidis N;Tolmasky ME
- 通讯作者:Tolmasky ME
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARCELO E TOLMASKY其他文献
MARCELO E TOLMASKY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARCELO E TOLMASKY', 18)}}的其他基金
1/2 CSUF/UCI-CFCCC Cancer Health Disparities Research Program (CHERP)
1/2 CSUF/UCI-CFCCC 癌症健康差异研究计划 (CHERP)
- 批准号:
10684039 - 财政年份:2021
- 资助金额:
$ 42.6万 - 项目类别:
1/2 CSUF/UCI-CFCCC Cancer Health Disparities Research Program (CHERP)
1/2 CSUF/UCI-CFCCC 癌症健康差异研究计划 (CHERP)
- 批准号:
10302802 - 财政年份:2021
- 资助金额:
$ 42.6万 - 项目类别:
1/2 CSUF/UCI-CFCCC Cancer Health Disparities Research Program (CHERP)
1/2 CSUF/UCI-CFCCC 癌症健康差异研究计划 (CHERP)
- 批准号:
10492739 - 财政年份:2021
- 资助金额:
$ 42.6万 - 项目类别:
DEALING WITH ANTIBIOTIC RESISTANCE--ANTISENSE TECHNOLOGY
应对抗生素耐药性——反义技术
- 批准号:
6083937 - 财政年份:2000
- 资助金额:
$ 42.6万 - 项目类别:
相似国自然基金
单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
- 批准号:62374057
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
磁场-电场协同作用下LaAlO3/SrTiO3界面二维电子气的圆偏振光伏效应研究
- 批准号:12304222
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Sirtuin 3维持平滑肌细胞线粒体呼吸功能抑制A型主动脉夹层发病的作用和机制
- 批准号:82300538
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应变调控二维磁性材料VX3的磁光拉曼研究
- 批准号:12304042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
cohesin与SYCP3协同调控精母细胞减数分裂联会复合体形成过程中染色质三维结构建立的分子机制
- 批准号:32370574
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:
10762273 - 财政年份:2023
- 资助金额:
$ 42.6万 - 项目类别:
The Oncogene Activated Mitochondrial Unfolded Protein Response Regulates Senescence Biology
癌基因激活线粒体未折叠蛋白反应调节衰老生物学
- 批准号:
10598922 - 财政年份:2023
- 资助金额:
$ 42.6万 - 项目类别:
Post-translational regulation of aromatase in aging
衰老过程中芳香酶的翻译后调控
- 批准号:
10572625 - 财政年份:2023
- 资助金额:
$ 42.6万 - 项目类别:
Diagnostic utility of antibodies to post-translationally modified nucleosomes in lupus nephritis
翻译后修饰核小体抗体在狼疮性肾炎中的诊断效用
- 批准号:
10683684 - 财政年份:2023
- 资助金额:
$ 42.6万 - 项目类别: