Structural landscape of photoreceptor synapses
感光器突触的结构景观
基本信息
- 批准号:10522890
- 负责人:
- 金额:$ 48.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:ArchitectureBiochemicalBiochemistryBipolar NeuronBlindnessBrainCell AdhesionCell Adhesion MoleculesCellsCellular biologyCessation of lifeCollaborationsCommunicationComplexConeDiseaseElectron MicroscopyElementsFunctional disorderG-Protein-Coupled ReceptorsGTP-Binding Protein RegulatorsGleanGlutamatesGoalsHumanIndiaInternationalLaboratoriesLeadLightMembrane PotentialsMolecularMolecular StructureMutationNeuronsNeurotransmitter ReceptorNeurotransmittersNight BlindnessOcular PathologyOrphanPhotonsPhotoreceptorsPhototransductionPlayPresynaptic TerminalsProteinsRGS ProteinsRegulationResearchResolutionRetinaRetinal ConeRetinal DiseasesRetinitis PigmentosaRodRoleSensorySignal TransductionSite-Directed MutagenesisStructureSynapsesSynaptic CleftSynaptic ReceptorsSynaptic TransmissionSystemVisionWorkcomorbiditycryogenicsexperimental studyextracellularfollow-upimprovedinterdisciplinary approachmacromolecular assemblynovel therapeutic interventionpostsynapticprogramsprotein protein interactionreceptorreconstitutionresponseretinal rodsscaffoldsuccesssynaptic functiontherapy developmentvirtualvisual processing
项目摘要
PROJECT SUMMARY
Rod and cone photoreceptors are indispensable for our vision. Their death or dysfunction is an underlying
cause for a vast majority of blinding retina conditions. Key to photoreceptor function is the ability to transmit the
signal that they generate in response to light to other neurons in the retina for processing of visual signals and
their communication to the brain. For this to occur, photoreceptors form elaborate synapses with the
downstream neurons, the bipolar cells (BC). Deficits in synaptic communication between photoreceptors and
bipolar cells are known to cause congenital stationary blindness in humans, various forms of rod/cone
dystrophies and frequent co-morbidity with many other ocular conditions. The long term goal of our collaborative
program is to obtain atomic level view of molecular organization of machinery that enable synaptic
communication of the photoreceptors with the hope to better understand blinding conditions and devising
strategies for their treatment.
Recent research from our laboratories and others have identified several molecules critical for the
synaptic communication of photoreceptors. We have further discovered that many of these components are
scaffolded into macromolecular assemblies that span the synaptic cleft and physically integrate pre-synaptic
elements of photoreceptors with post-synaptic receptors in BC. Specifically, we found that the postsynaptic
receptor on BC: mGluR6 interacts with two cell-adhesion molecules in photoreceptors: ELFN1 and ELFN2.
Furthermore, the machinery that drives excitation of BC in response to synaptic photoreceptor inputs is
associated with an orphan receptor GPR179 which in turn is integrated with pre-synaptic cell adhesion-like
molecule pikachurin (Pika) in photoreceptors. We also documented that loss of this organization abolishes
synaptic transmission leading to night blindness. However, at the moment we know absolutely nothing about
structural basis of these trans-synaptic complexes.
Proposed studies aim to fill this gap by determining the atomic structures of the key trans-synaptic
scaffolds: ELFN1-mGluR6 and Pika-GPR179 complexes and probing their biochemical mechanisms. This will
be achieved by highly synergistic international collaboration leveraging expertise in biochemistry and cell biology
of photoreceptor synaptic proteins and recent advances in high resolution cryogenic electron microscopy
(CryoEM) to obtain high resolution molecular structures of the complexes probing their mechanisms at
exceedingly precise level. The premise of this proposal is that understanding synaptic organization of
photoreceptors would lead to novel therapeutic strategies for ameliorating blindness.
项目概要
视杆细胞和视锥细胞感光器对于我们的视觉是不可或缺的。他们的死亡或功能障碍是潜在的
导致绝大多数视网膜失明的原因。光感受器功能的关键是传输光线的能力
它们响应光而向视网膜中的其他神经元发出信号,以处理视觉信号和
他们与大脑的沟通。为了实现这一点,光感受器与光感受器形成复杂的突触。
下游神经元,双极细胞(BC)。光感受器和光感受器之间的突触通讯缺陷
已知双极细胞会导致人类先天性静止性失明,各种形式的视杆细胞/视锥细胞
营养不良以及与许多其他眼部疾病的频繁共病。我们合作的长期目标
程序是获得使突触能够发生的机器分子组织的原子水平视图
光感受器之间的交流,希望更好地了解致盲条件并进行设计
他们的治疗策略。
我们的实验室和其他实验室的最新研究已经确定了几种对
光感受器的突触通讯。我们进一步发现,其中许多组件是
支架形成跨越突触间隙并物理整合突触前的大分子组件
BC 中具有突触后受体的光感受器元件。具体来说,我们发现突触后
BC 上的受体:mGluR6 与光感受器中的两个细胞粘附分子 ELFN1 和 ELFN2 相互作用。
此外,响应突触感光器输入而驱动 BC 兴奋的机制是
与孤儿受体 GPR179 相关,而孤儿受体 GPR179 又与突触前细胞粘附样整合
光感受器中的皮卡丘林 (Pika) 分子。我们还记录了该组织的丧失废除了
突触传递导致夜盲症。然而,目前我们对此一无所知
这些跨突触复合体的结构基础。
拟议的研究旨在通过确定关键跨突触的原子结构来填补这一空白
支架:ELFN1-mGluR6 和 Pika-GPR179 复合物并探讨其生化机制。这将
通过利用生物化学和细胞生物学专业知识的高度协同国际合作来实现
光感受器突触蛋白的研究和高分辨率低温电子显微镜的最新进展
(CryoEM) 获得复合物的高分辨率分子结构,探索其机制
极其精确的水平。该提案的前提是理解突触组织
光感受器将带来改善失明的新治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kirill A. Martemyanov其他文献
Direct expression of PCR products in a cell‐free transcription/translation system: synthesis of antibacterial peptide cecropin
PCR产物在无细胞转录/翻译系统中的直接表达:抗菌肽天蚕素的合成
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:3.5
- 作者:
Kirill A. Martemyanov;Alexander S. Spirin;Anatoly T. Gudkov - 通讯作者:
Anatoly T. Gudkov
Mechanisms of Gβγ Release upon GPCR Activation
- DOI:
10.1016/j.tibs.2021.05.002 - 发表时间:
2021-09-01 - 期刊:
- 影响因子:
- 作者:
Kirill A. Martemyanov - 通讯作者:
Kirill A. Martemyanov
Efficient in vivo labeling of endogenous proteins with SMART delineates retina cellular and synaptic organization
使用 SMART 对体内内源性蛋白质进行高效标记描绘了视网膜细胞和突触组织
- DOI:
10.1038/s41467-025-58945-6 - 发表时间:
2025-04-22 - 期刊:
- 影响因子:15.700
- 作者:
Chuanping Zhao;Yan Cao;Noor Ibrahim;Yuchen Wang;Kirill A. Martemyanov - 通讯作者:
Kirill A. Martemyanov
Distinct Neuronal Expression Patterns of ELFN1 and ELFN2: Trans-synaptic Modulators of Group III mGluRs
ELFN1 和 ELFN2 的独特神经元表达模式:III 组 mGluRs 的突触后调节剂
- DOI:
10.1038/s41380-019-0593-z - 发表时间:
2019-11-21 - 期刊:
- 影响因子:10.100
- 作者:
Henry A. Dunn;Stefano Zucca;Maria Dao;Cesare Orlandi;Kirill A. Martemyanov - 通讯作者:
Kirill A. Martemyanov
Receptor-dependent influence of R7 RGS proteins on neuronal GIRK channel signaling dynamics
- DOI:
10.1016/j.pneurobio.2024.102686 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Haichang Luo;Allison Anderson;Ikuo Masuho;Ezequiel Marron Fernandez de Velasco;Lutz Birnbaumer;Kirill A. Martemyanov;Kevin Wickman - 通讯作者:
Kevin Wickman
Kirill A. Martemyanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kirill A. Martemyanov', 18)}}的其他基金
Architecture of inhibitory G protein signaling in the hippocampus
海马抑制性 G 蛋白信号传导的结构
- 批准号:
10659438 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Orphan Receptors in Regulation of Neuronal G Protein Signaling
神经元 G 蛋白信号传导调节中的孤儿受体
- 批准号:
10358596 - 财政年份:2015
- 资助金额:
$ 48.3万 - 项目类别:
Orphan Receptors in Regulation of Neuronal G Protein Signaling
神经元 G 蛋白信号传导调节中的孤儿受体
- 批准号:
8958189 - 财政年份:2015
- 资助金额:
$ 48.3万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Continuing Grant
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Standard Grant
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Operating Grants
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Examination of risk assessment and biochemical assessment of fracture development focusing on the body composition of patients with rheumatoid arthritis
关注类风湿性关节炎患者身体成分的骨折发生风险评估和生化评估检查
- 批准号:
22KJ2600 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




