Structural landscape of photoreceptor synapses
感光器突触的结构景观
基本信息
- 批准号:10707351
- 负责人:
- 金额:$ 48.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:ArchitectureBiochemicalBiochemistryBipolar NeuronBlindnessBrainCell AdhesionCell Adhesion MoleculesCellsCellular biologyCessation of lifeCollaborationsCommunicationComplexConeCone dystrophyCryoelectron MicroscopyDedicationsDiseaseElementsFunctional disorderG-Protein-Coupled ReceptorsGTP-Binding Protein RegulatorsGleanGlutamatesGoalsHumanIndiaInternationalLaboratoriesLightMembrane PotentialsMolecularMolecular StructureMutationNeuronsNeurotransmitter ReceptorNeurotransmittersNight BlindnessOcular PathologyOrphanPhotonsPhotoreceptorsPhototransductionPlayPresynaptic TerminalsProteinsRGS ProteinsRegulationResearchResolutionRetinaRetinal ConeRetinal DiseasesRodRoleSensorySignal TransductionSite-Directed MutagenesisStructureSynapsesSynaptic CleftSynaptic ReceptorsSynaptic TransmissionSystemVertebrate PhotoreceptorsVisionWorkcomorbidityexperimental studyextracellularfollow-upimprovedinterdisciplinary approachmacromolecular assemblynovel therapeutic interventionpostsynapticpresynapticprogramsprotein protein interactionreceptorreconstitutionresponsescaffoldsuccesssynaptic functiontherapy developmenttransmission processvirtualvisual processing
项目摘要
PROJECT SUMMARY
Rod and cone photoreceptors are indispensable for our vision. Their death or dysfunction is an underlying
cause for a vast majority of blinding retina conditions. Key to photoreceptor function is the ability to transmit the
signal that they generate in response to light to other neurons in the retina for processing of visual signals and
their communication to the brain. For this to occur, photoreceptors form elaborate synapses with the
downstream neurons, the bipolar cells (BC). Deficits in synaptic communication between photoreceptors and
bipolar cells are known to cause congenital stationary blindness in humans, various forms of rod/cone
dystrophies and frequent co-morbidity with many other ocular conditions. The long term goal of our collaborative
program is to obtain atomic level view of molecular organization of machinery that enable synaptic
communication of the photoreceptors with the hope to better understand blinding conditions and devising
strategies for their treatment.
Recent research from our laboratories and others have identified several molecules critical for the
synaptic communication of photoreceptors. We have further discovered that many of these components are
scaffolded into macromolecular assemblies that span the synaptic cleft and physically integrate pre-synaptic
elements of photoreceptors with post-synaptic receptors in BC. Specifically, we found that the postsynaptic
receptor on BC: mGluR6 interacts with two cell-adhesion molecules in photoreceptors: ELFN1 and ELFN2.
Furthermore, the machinery that drives excitation of BC in response to synaptic photoreceptor inputs is
associated with an orphan receptor GPR179 which in turn is integrated with pre-synaptic cell adhesion-like
molecule pikachurin (Pika) in photoreceptors. We also documented that loss of this organization abolishes
synaptic transmission leading to night blindness. However, at the moment we know absolutely nothing about
structural basis of these trans-synaptic complexes.
Proposed studies aim to fill this gap by determining the atomic structures of the key trans-synaptic
scaffolds: ELFN1-mGluR6 and Pika-GPR179 complexes and probing their biochemical mechanisms. This will
be achieved by highly synergistic international collaboration leveraging expertise in biochemistry and cell biology
of photoreceptor synaptic proteins and recent advances in high resolution cryogenic electron microscopy
(CryoEM) to obtain high resolution molecular structures of the complexes probing their mechanisms at
exceedingly precise level. The premise of this proposal is that understanding synaptic organization of
photoreceptors would lead to novel therapeutic strategies for ameliorating blindness.
项目摘要
视杆和视锥光感受器对我们的视觉是不可或缺的。他们的死亡或功能障碍是潜在的
导致绝大多数致盲性视网膜疾病。光感受器功能的关键是传递光的能力。
它们响应于光而产生的信号传递到视网膜中的其他神经元以处理视觉信号,
他们与大脑的交流。为了做到这一点,光感受器形成了精细的突触,
下游神经元,双极细胞(BC)。光感受器和神经元之间突触通讯的缺陷
已知双极细胞会导致人类先天性静止性失明,各种形式的视杆/视锥细胞
营养不良以及与许多其它眼部病症的频繁共病。我们合作的长期目标
该计划是为了获得原子水平的机械,使突触的分子组织的看法
光感受器的通信,希望更好地了解致盲条件和设计
他们的治疗策略。
我们的实验室和其他人最近的研究已经确定了几种关键的分子,
光感受器的突触通讯。我们进一步发现,这些组件中有许多是
支架形成跨越突触间隙的大分子组装体,并在物理上整合突触前
BC中的光感受器元件与突触后感受器。具体来说,我们发现突触后
BC上的受体:mGluR 6与光感受器中的两种细胞粘附分子相互作用:ELFN 1和ELFN 2。
此外,响应于突触光感受器输入而驱动BC兴奋的机制是
与孤儿受体GPR 179相关,后者又与突触前细胞粘附样蛋白整合。
分子pikachurin(鼠兔)在光感受器。我们还记录了失去这个组织
突触传递导致夜盲症然而,目前我们对
这些跨突触复合物的结构基础。
拟议的研究旨在通过确定关键跨突触的原子结构来填补这一空白。
支架:ELFN 1-mGluR 6和Pika-GPR 179复合物,并探索其生化机制。这将
通过高度协同的国际合作,利用生物化学和细胞生物学方面的专业知识,
光感受器突触蛋白的研究进展及高分辨率低温电子显微镜的最新进展
(CryoEM)以获得复合物的高分辨率分子结构,从而探测它们在
非常精确的水平。这个建议的前提是,了解突触组织的
光感受器将导致改善失明的新的治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kirill A. Martemyanov其他文献
Direct expression of PCR products in a cell‐free transcription/translation system: synthesis of antibacterial peptide cecropin
PCR产物在无细胞转录/翻译系统中的直接表达:抗菌肽天蚕素的合成
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:3.5
- 作者:
Kirill A. Martemyanov;Alexander S. Spirin;Anatoly T. Gudkov - 通讯作者:
Anatoly T. Gudkov
Mechanisms of Gβγ Release upon GPCR Activation
- DOI:
10.1016/j.tibs.2021.05.002 - 发表时间:
2021-09-01 - 期刊:
- 影响因子:
- 作者:
Kirill A. Martemyanov - 通讯作者:
Kirill A. Martemyanov
Efficient in vivo labeling of endogenous proteins with SMART delineates retina cellular and synaptic organization
使用 SMART 对体内内源性蛋白质进行高效标记描绘了视网膜细胞和突触组织
- DOI:
10.1038/s41467-025-58945-6 - 发表时间:
2025-04-22 - 期刊:
- 影响因子:15.700
- 作者:
Chuanping Zhao;Yan Cao;Noor Ibrahim;Yuchen Wang;Kirill A. Martemyanov - 通讯作者:
Kirill A. Martemyanov
Distinct Neuronal Expression Patterns of ELFN1 and ELFN2: Trans-synaptic Modulators of Group III mGluRs
ELFN1 和 ELFN2 的独特神经元表达模式:III 组 mGluRs 的突触后调节剂
- DOI:
10.1038/s41380-019-0593-z - 发表时间:
2019-11-21 - 期刊:
- 影响因子:10.100
- 作者:
Henry A. Dunn;Stefano Zucca;Maria Dao;Cesare Orlandi;Kirill A. Martemyanov - 通讯作者:
Kirill A. Martemyanov
Receptor-dependent influence of R7 RGS proteins on neuronal GIRK channel signaling dynamics
- DOI:
10.1016/j.pneurobio.2024.102686 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Haichang Luo;Allison Anderson;Ikuo Masuho;Ezequiel Marron Fernandez de Velasco;Lutz Birnbaumer;Kirill A. Martemyanov;Kevin Wickman - 通讯作者:
Kevin Wickman
Kirill A. Martemyanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kirill A. Martemyanov', 18)}}的其他基金
Architecture of inhibitory G protein signaling in the hippocampus
海马抑制性 G 蛋白信号传导的结构
- 批准号:
10659438 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Orphan Receptors in Regulation of Neuronal G Protein Signaling
神经元 G 蛋白信号传导调节中的孤儿受体
- 批准号:
10358596 - 财政年份:2015
- 资助金额:
$ 48.3万 - 项目类别:
Orphan Receptors in Regulation of Neuronal G Protein Signaling
神经元 G 蛋白信号传导调节中的孤儿受体
- 批准号:
8958189 - 财政年份:2015
- 资助金额:
$ 48.3万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
- 批准号:
2334134 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Standard Grant














{{item.name}}会员




