Precision Design of Antimicrobial Peptides Against Bacterial Infections
抗细菌感染抗菌肽的精密设计
基本信息
- 批准号:10522451
- 负责人:
- 金额:$ 30.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-23 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimalsAnti-Bacterial AgentsAntibiotic ResistanceAntibioticsAntimicrobial Cationic PeptidesBacteriaBacterial Antibiotic ResistanceBacterial InfectionsBindingBiologicalBiological AssayCalorimetryCellsCellular AssayCharacteristicsChemicalsClinicCommunicable DiseasesCommunitiesComplexComputational TechniqueDangerousnessDataDevelopmentDrug resistanceEnvironmentExtravasationFailureFluorescenceFree EnergyFutureGenerationsGoalsGrowthHealthcareHomoInfectionInnate Immune SystemKlebsiella pneumoniaeKnowledgeLearningLipidsMachine LearningMeasurementMembraneMembrane ProteinsMethodologyMethodsMicrobiologyModernizationMolecularPeptide SynthesisPeptidesPeriplasmic ProteinsPlantsProcessPropertyProteinsPublic HealthResearchResistanceRiskStructureTestingTherapeuticTimeTitrationsToxic effectVesicleWorkanalogantibiotic resistant infectionsantimicrobial peptidebacterial resistancecombatcomputerized toolscost effectivedesigndrug resistant pathogenexperimental studygenerative adversarial networkinnovationknowledge of resultslarge datasetslight scatteringlipid transportmagaininmembrane modelmulti-scale modelingnatural antimicrobialnetwork modelsnext generationnovelnovel therapeuticspathogenpathogenic bacteriapeptide structureprotein aminoacid sequenceresearch and developmentsimulationsmall moleculesynergismtachyplesintherapeutic targettool
项目摘要
PROJECT SUMMARY
Antibiotic resistance of bacterial pathogens is one of the greatest public health challenges of our time. It causes
difficult-to-treat infections and jeopardizes modern healthcare advancements. As the emergence of bacterial
resistance is outpacing the development of new antibiotics, we must find cost-effective, innovative approaches
to discover new antibacterial therapeutics complementary to small-molecule antibiotics. Antimicrobial peptides
(AMPs), as a new class of antibacterial agents, represent one of the most promising solutions to fill this void,
since they generally undergo faster development, display rapid onsets of killing, and most importantly show lower
risks of induced resistance, compared to small-molecule antibiotics. Yet, very few analogs or modified derivatives
of natural AMPs have been approved in practice, and most of the failure is caused by systemic or local toxicity
associated with broad-spectrum antibacterial activity. Toward a long-term goal to discover effective, selective
AMPs as therapeutics to target a narrow spectrum of specific antibiotic-resistant pathogens, our objective is to
develop the new capacity needed for such discovery, by integrating innovative approaches and applications of
machine learning, multiscale modeling, peptide synthesis, and microbiology. We have developed the first
generative adversarial network model (AMP-GAN) to produce AMP candidates with diverse sequences and
structures, as well as accurate multiscale models and methods to study the mechanisms of AMP aggregation
and target interactions. It is our central hypothesis that AMP selectivity may be achieved via controlling their
sequence, structure, interaction, aggregation, and co-aggregation. In pursuit of three specific aims to establish
a novel methodology toward discovery of narrow-spectrum AMPs, we will (i) generate selective AMP sequences
with predictable activity and pathogen targets, (ii) identify AMPs to target characteristic biomolecules in
pathogens, and (iii) modulate AMP aggregation to tune cell selectivity or to achieve synergy. We will advance
our computational techniques like AMP-GAN and top-down simulations in conjugation with chemical
characterizations (for structure and dynamics) and cellular assays (for activity and toxicity). We anticipate gaining
a fundamental understanding of how to design narrow-spectrum AMPs, as well as how to combine new
computational and experimental tools to achieve desired AMP selectivity. Overall, this contribution can be
significant since it will establish new avenues for precision AMP design and bring more AMPs closer to the clinic
by overcoming their known pitfalls. The resulting knowledge will be widely shared in the scientific community for
AMP research and development. Our concepts and approaches are innovative, as they shift the current
paradigm of broad-spectrum AMP design towards higher accuracy, diversity, and target selectivity through
precision AMP design. Collectively, given the increasing need for treatment options against antibiotic-resistant
infections, the methodology and tools from this proposed research will enable the discovery of new therapeutics
for challenging infectious diseases.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianing Li其他文献
Skyline for geo-textual data,Geoinformatica
地理文本数据的天际线——Geoinformatica
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:2
- 作者:
Jianing Li;Hongzhi Wang;Jianzhong Li;Hong Gao - 通讯作者:
Hong Gao
Jianing Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianing Li', 18)}}的其他基金
Precision Design of Antimicrobial Peptides Against Bacterial Infections
抗细菌感染抗菌肽的精密设计
- 批准号:
10708842 - 财政年份:2022
- 资助金额:
$ 30.29万 - 项目类别:
Structure, Mechanism, and Regulation of PACAP/VIP GPCR subtypes
PACAP/VIP GPCR 亚型的结构、机制和调控
- 批准号:
10473545 - 财政年份:2018
- 资助金额:
$ 30.29万 - 项目类别:
Structure, Mechanism, and Regulation of PACAP/VIP GPCR subtypes
PACAP/VIP GPCR 亚型的结构、机制和调控
- 批准号:
10001570 - 财政年份:2018
- 资助金额:
$ 30.29万 - 项目类别:
Structure, Mechanism, and Regulation of PACAP/VIP GPCR Subtypes
PACAP/VIP GPCR 亚型的结构、机制和调控
- 批准号:
10819926 - 财政年份:2018
- 资助金额:
$ 30.29万 - 项目类别:
Structure, Mechanism, and Regulation of PACAP/VIP GPCR subtypes
PACAP/VIP GPCR 亚型的结构、机制和调控
- 批准号:
10242658 - 财政年份:2018
- 资助金额:
$ 30.29万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 30.29万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 30.29万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 30.29万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 30.29万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 30.29万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 30.29万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 30.29万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 30.29万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 30.29万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 30.29万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




