Lipid Metabolism Switch Triggers Invasive and Chemoresistant Epithelial Ovarian Cancer Phenotype
脂质代谢开关触发侵袭性和耐药性上皮性卵巢癌表型
基本信息
- 批准号:10522428
- 负责人:
- 金额:$ 35.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-09 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATP-G-actinAbdominal CavityActinsAdipocytesAffectAnimalsAscitesAutophagocytosisAutophagosomeBiosensorCell SurvivalCellsCellular Metabolic ProcessChemoresistanceCytosolDataDevelopmentDiagnosisDiseaseDisease ProgressionDrug resistanceEnergy MetabolismEnergy-Generating ResourcesEnsureEnvironmentEpithelial ovarian cancerFatty AcidsFatty acid glycerol estersFree EnergyGeneticGenus HippocampusGlycolysisGrowthHeterogeneityHumanHypoxiaIn VitroIndividualInflammatoryIntermediate FilamentsLipidsLipolysisLiquid substanceLysosomesMalignant Female Reproductive System NeoplasmMeasuresMediatingMetabolicMetabolic stressMetabolismMicrospheresMitochondriaModelingMolecularMusNatureNeoplasm MetastasisNonesterified Fatty AcidsNutrientOmentumOrganoidsOvaryOxidative PhosphorylationPathway interactionsPeritonealPeritoneumPharmacologyPhenotypePrimary NeoplasmProductionProteinsReactive Oxygen SpeciesResearchResistanceRoleSmall Interfering RNASourceStressStromal CellsStructureTestingTherapeuticVimentinbasebiophysical analysiscancer cellcell motilitycell typechemotherapyfatty acid oxidationhigh resolution imagingin vivo Modelinhibitorlipid metabolismlipid transportmetabolomicsmigrationneoplastic cellnew therapeutic targetnovelnutrient deprivationparacrinepolarized cellpolymerizationrecruitscaffoldsingle-cell RNA sequencingthree dimensional cell culturetumortumor growthtumor heterogeneitytumor metabolismtumor microenvironmenttumor progression
项目摘要
PROJECT SUMMARY
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer; frequently diagnosed after it has spread
from the ovary to the omentum fat pad. A major challenge to understanding and targeting EOC is the
heterogeneous nature of the disease, which makes it difficult to develop treatments that effectively target and
destroy all cancer cells. This heterogeneity results in complicated molecular landscapes with subpopulations of
highly invasive and chemoresistant tumor cells. It is critical to understand how this heterogeneity in cancer cells
develops and contributes to EOC disease progression. Polyploidal giant cancer cells represent a small
subpopulation of drug-resistant and dormant cancer cells that survive treatment and later awaken to form new
tumor cells through amitotic budding. Single cell biophysical analysis of tumor organoid cultures will be used to
determine how polyploidal giant cancer cells and other invasive cells contribute to EOC disease progression.
In the EOC tumor microenvironment, cancer cells frequently encounter metabolic stress from nutrient
deprivation, hypoxia, and toxic therapeutics, which can trigger metabolic reprogramming to promote cell survival.
Cells can undergo a metabolic shift from glycolysis to oxidative phosphorylation to meet energy demands of
survival and invasiveness; this shift in metabolism has been correlated with highly energetic mitochondria, lipid
droplet disappearance (lipolysis), and autophagy. This is especially important in PGCCs, which have increased
nutrient demands in part to their larger size and more invasive phenotype. Additionally, EOC metastases form
from multicellular aggregates that are shed from the primary tumor into the adipocyte-rich abdominal cavity.
Previous studies have demonstrated that peritoneal adipocytes can transfer free fatty acids to EOC cells to
provide cellular energy for metastatic tumor growth. Fatty acids provide a rich energy source for ATP-dependent
actin polymerization and actin-based protrusions are critical for cell migration and during metastasis.
We hypothesize that invasive EOC cells store energy from exogenous lipid sources (including adipocytes and
lipid-rich ascites fluid) in cytosolic lipid droplets, and under metabolic stress use these lipid droplets to generate
mitochondrial ATP that is required for invasive cell migration through autophagy. To prove this hypothesis, we
will use a novel 3D culture model and animal studies to track metabolic changes in individual chemoresistant
EOC cells as well as study heterogeneity in lipid droplet metabolism. The proposed research will investigate the
role of metabolic and treatment stress in activating lipid metabolism (Aim 1) and autophagy (Aim 2), and
determine how metabolic alterations in subpopulations of highly invasive cells (including PGCCs) contribute to
the development of aggressive tumors (Aim 3). The proposed studies will reveal novel mechanisms contributing
to cellular heterogeneity and dysregulated metabolism, along with new therapeutic targets to investigate in EOC.
项目总结
上皮性卵巢癌(EOC)是最致命的妇科癌症,常在扩散后确诊。
从卵巢到大网膜脂肪垫。理解和瞄准EOC的一个主要挑战是
疾病的异质性,这使得很难开发有效地针对和
摧毁所有的癌细胞。这种异质性导致了复杂的分子景观,其亚群为
高度侵袭性和抗药性的肿瘤细胞。了解癌细胞中的这种异质性是如何
发展并促进EoC疾病的发展。多倍体巨型癌细胞代表着一种小的
耐药和休眠的癌细胞亚群,在治疗后存活并随后苏醒形成新的
肿瘤细胞通过无丝分裂萌发。肿瘤器官培养的单细胞生物物理分析将用于
确定多倍体巨型癌细胞和其他侵袭性细胞如何促进卵巢上皮性癌疾病的进展。
在EoC肿瘤微环境中,癌细胞经常受到营养物质的代谢应激
剥夺、缺氧和毒性治疗,可触发代谢重新编程以促进细胞存活。
细胞可以经历从糖酵解到氧化磷酸化的代谢转变,以满足以下能量需求
生存和侵袭性;这种新陈代谢的转变与高能量的线粒体、脂质有关
液滴消失(脂解)和自噬。这在PGCC中尤其重要,它们已经增加了
营养需求部分归因于它们更大的体型和更具侵袭性的表型。此外,EoC转移形成
从原发肿瘤脱落到富含脂肪细胞的腹腔的多细胞聚集体。
以前的研究表明,腹膜脂肪细胞可以将游离脂肪酸转移到EOC细胞,从而
为转移性肿瘤生长提供细胞能量。脂肪酸为三磷酸腺苷依赖提供丰富的能量来源
肌动蛋白聚合和基于肌动蛋白的突起对细胞迁移和转移至关重要。
我们假设侵袭性EOC细胞储存来自外源性脂肪来源的能量(包括脂肪细胞和
富含脂类的腹水),在代谢压力下,利用这些脂滴生成
线粒体三磷酸腺苷是细胞通过自噬进行侵入性迁移所必需的。为了证明这一假设,我们
将使用一种新的3D培养模型和动物研究来跟踪个体化疗耐药的代谢变化
EOC细胞,以及研究脂滴代谢的异质性。拟议的研究将调查
代谢和治疗应激在激活脂代谢(目标1)和自噬(目标2)中的作用,以及
确定高侵袭性细胞亚群(包括PGCC)的代谢变化如何促进
侵袭性肿瘤的发展(目标3)。拟议中的研究将揭示新的机制
细胞异质性和代谢紊乱,以及在卵巢癌研究的新的治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michelle R Dawson其他文献
Michelle R Dawson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michelle R Dawson', 18)}}的其他基金
Lipid Metabolism Switch Triggers Invasive and Chemoresistant Epithelial Ovarian Cancer Phenotype
脂质代谢开关触发侵袭性和耐药性上皮性卵巢癌表型
- 批准号:
10680460 - 财政年份:2022
- 资助金额:
$ 35.32万 - 项目类别:














{{item.name}}会员




