Lipid Metabolism Switch Triggers Invasive and Chemoresistant Epithelial Ovarian Cancer Phenotype
脂质代谢开关触发侵袭性和耐药性上皮性卵巢癌表型
基本信息
- 批准号:10680460
- 负责人:
- 金额:$ 37.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-09 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATP-G-actinAbdominal CavityActinsAdipocytesAffectAnimalsAscitesAutophagocytosisAutophagosomeBiological AssayBiosensorCell SurvivalCellsCellular Metabolic ProcessChemoresistanceCytosolDataDevelopmentDiagnosisDiseaseDisease ProgressionDrug resistanceEnergy MetabolismEnergy-Generating ResourcesEnsureEnvironmentEpithelial ovarian cancerFatty AcidsFatty acid glycerol estersFree EnergyGeneticGenus HippocampusGlycolysisGrowthHeterogeneityHumanHypoxiaIn VitroIndividualInflammatoryIntermediate FilamentsLipidsLipolysisLiquid substanceLysosomesMalignant Female Reproductive System NeoplasmMeasuresMediatingMetabolicMetabolic stressMetabolismMicrospheresMitochondriaModelingMolecularMusNatureNeoplasm MetastasisNonesterified Fatty AcidsNutrientOmentumOrganoidsOvaryOxidative PhosphorylationPathway interactionsPeritonealPeritoneumPhenotypePolymersPrimary NeoplasmProductionProteinsReactive Oxygen SpeciesResearchResistanceRoleSmall Interfering RNASourceStressStromal CellsStructureTestingTherapeuticTumor PromotionVimentinbiophysical analysiscancer cellcancer therapycell motilitycell typechemotherapyfatty acid oxidationhigh resolution imagingin vivo Modelinhibition of autophagyinhibitorlipid metabolismlipid transportmetabolomicsmigrationneoplastic cellnew therapeutic targetnovelnutrient deprivationparacrinepharmacologicpolarized cellpolymerizationprogramsrecruitscaffoldsingle-cell RNA sequencingthree dimensional cell culturetumortumor growthtumor heterogeneitytumor metabolismtumor microenvironmenttumor progression
项目摘要
PROJECT SUMMARY
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer; frequently diagnosed after it has spread
from the ovary to the omentum fat pad. A major challenge to understanding and targeting EOC is the
heterogeneous nature of the disease, which makes it difficult to develop treatments that effectively target and
destroy all cancer cells. This heterogeneity results in complicated molecular landscapes with subpopulations of
highly invasive and chemoresistant tumor cells. It is critical to understand how this heterogeneity in cancer cells
develops and contributes to EOC disease progression. Polyploidal giant cancer cells represent a small
subpopulation of drug-resistant and dormant cancer cells that survive treatment and later awaken to form new
tumor cells through amitotic budding. Single cell biophysical analysis of tumor organoid cultures will be used to
determine how polyploidal giant cancer cells and other invasive cells contribute to EOC disease progression.
In the EOC tumor microenvironment, cancer cells frequently encounter metabolic stress from nutrient
deprivation, hypoxia, and toxic therapeutics, which can trigger metabolic reprogramming to promote cell survival.
Cells can undergo a metabolic shift from glycolysis to oxidative phosphorylation to meet energy demands of
survival and invasiveness; this shift in metabolism has been correlated with highly energetic mitochondria, lipid
droplet disappearance (lipolysis), and autophagy. This is especially important in PGCCs, which have increased
nutrient demands in part to their larger size and more invasive phenotype. Additionally, EOC metastases form
from multicellular aggregates that are shed from the primary tumor into the adipocyte-rich abdominal cavity.
Previous studies have demonstrated that peritoneal adipocytes can transfer free fatty acids to EOC cells to
provide cellular energy for metastatic tumor growth. Fatty acids provide a rich energy source for ATP-dependent
actin polymerization and actin-based protrusions are critical for cell migration and during metastasis.
We hypothesize that invasive EOC cells store energy from exogenous lipid sources (including adipocytes and
lipid-rich ascites fluid) in cytosolic lipid droplets, and under metabolic stress use these lipid droplets to generate
mitochondrial ATP that is required for invasive cell migration through autophagy. To prove this hypothesis, we
will use a novel 3D culture model and animal studies to track metabolic changes in individual chemoresistant
EOC cells as well as study heterogeneity in lipid droplet metabolism. The proposed research will investigate the
role of metabolic and treatment stress in activating lipid metabolism (Aim 1) and autophagy (Aim 2), and
determine how metabolic alterations in subpopulations of highly invasive cells (including PGCCs) contribute to
the development of aggressive tumors (Aim 3). The proposed studies will reveal novel mechanisms contributing
to cellular heterogeneity and dysregulated metabolism, along with new therapeutic targets to investigate in EOC.
项目总结
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Metronomic and single high-dose paclitaxel treatments produce distinct heterogenous chemoresistant cancer cell populations.
- DOI:10.1038/s41598-023-46055-6
- 发表时间:2023-11-06
- 期刊:
- 影响因子:4.6
- 作者:Pena, Carolina Mejia;Skipper, Thomas A.;Hsu, Jeffrey;Schechter, Ilexa;Ghosh, Deepraj;Dawson, Michelle R.
- 通讯作者:Dawson, Michelle R.
Spatial Heterogeneity in Cytoskeletal Mechanics Response to TGF-β1 and Hypoxia Mediates Partial Epithelial-to-Meshenchymal Transition in Epithelial Ovarian Cancer Cells.
- DOI:10.3390/cancers15123186
- 发表时间:2023-06-14
- 期刊:
- 影响因子:5.2
- 作者:Ghosh, Deepraj;Hsu, Jeffrey;Soriano, Kylen;Pena, Carolina Mejia;Lee, Amy H.;Dizon, Don S.;Dawson, Michelle R.
- 通讯作者:Dawson, Michelle R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michelle R Dawson其他文献
Michelle R Dawson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michelle R Dawson', 18)}}的其他基金
Lipid Metabolism Switch Triggers Invasive and Chemoresistant Epithelial Ovarian Cancer Phenotype
脂质代谢开关触发侵袭性和耐药性上皮性卵巢癌表型
- 批准号:
10522428 - 财政年份:2022
- 资助金额:
$ 37.57万 - 项目类别:














{{item.name}}会员




