Integration of circadian and homeostatic signals in a peptidergic circuit in Drosophila
果蝇肽能回路中昼夜节律和稳态信号的整合
基本信息
- 批准号:10523627
- 负责人:
- 金额:$ 4.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteBackBehaviorBehavioralBehavioral AssayBiological AssayBrainBrain regionCalciumCellsChronicCircadian DysregulationCircadian RhythmsClustered Regularly Interspaced Short Palindromic RepeatsComplexCuesDrosophila genusDrosophila melanogasterElectrophysiology (science)Feeding PatternsFeeding behaviorsGeneticGenetic ModelsGoalsHealthHomeostasisHumanHungerHypothalamic structureImageInterneuronsInterventionLeadMammalsMentorsNeuronsNeuropeptidesNutritionalOrganismOutputPeptidesPhasePhysiologicalPhysiologyPopulationPublishingRNA InterferenceRestRoleShapesSignal TransductionSourceStarvationSystemTimeWorkanalogbasecholinergiccircadiancircadian pacemakerenvironmental changefeedingimprovedinsightinsulin-like peptideneural circuitneuroregulationparacrineresponseskillssleep patterntool
项目摘要
Project Summary/ Abstract
There is rapidly accumulating evidence that disruptions of circadian patterns of sleep, activity and feeding lead
to deleterious health consequences. While circadian clock mechanisms are well-studied, the relationship
between time-of-day cues and homeostatic drives such as hunger are poorly understood. The integration of
circadian information with nutritional cues occurs downstream of the core clock cells in the brain at the
intersection of multiple behavioral circuits. This proposal exploits the Drosophila melanogaster genetic
model to examine the mechanism by which circadian signals integrate with feeding circuitry to
coordinate locomotor rhythms with feeding behavior. The Drosophila pars intercerebralis (PI), an analog of
the mammalian hypothalamus, is a peptidergic center that receives both time-of-day and nutritional state
information. Based on published and preliminary findings, it is likely that that the PI receives excitatory input from
core clock neurons via neuropeptide signals, as well as inhibitory inputs from cholinergic Hugin-producing
gustatory interneurons. The central hypothesis of this proposal is that each of the peptidergic PI populations
(DH44+, insulin-like peptide producing, SIFamide+ and Taotie) receives a unique set of inputs, which must then
be integrated within the PI to coordinate behavioral outputs, and that this integration occurs via intra-PI paracrine
neuropeptide signaling. Thus, PI populations likely modulate both rest:activity rhythms and feeding behavior
depending on nutritional state to allow responses to acute environmental cues. In the mentored phase of this
project the applicant will characterize the connectivity from the central brain clock (Aim 1) and the hugin+
gustatory interneurons (Aim 2) to the PI and examine how each of these circuits modulates feeding and
rest:activity behavior (Aims 1 and 2). In the independent phase of this project the applicant will use skills gained
in the mentored phase to investigate how starvation overrides clock control of PI neuron physiology and behavior
(Aim 3) and the role of intra-PI connectivity in coordinating locomotor rhythms and feeding behavior (Aim 4). To
pursue these aims the applicant will use a combination of genetic tools including RNAi and CRISPR,
physiological assays including electrophysiology and calcium imaging, and behavioral assays for locomotor
rhythms and feeding. Successful completion of this project will offer important advances at both the level of
neural circuitry and behavior. First, it will begin to elucidate how intersecting circuits communicate using
neuromodulatory peptides. Neuromodulatory signaling has proven difficult to study in mammalian systems, and
this work can offer insights that will be applicable to studies of neuropeptidergic regions in mammals, particularly
in the hypothalamus. Second, it will advance understanding of the complex interplay of circadian rhythms and
feeding both at the circuit and behavioral levels. Understanding not only how circuitry shapes behavior, but how
behavior such as altered feeding patterns feeds back to the brain is important for developing interventions to
improve human health.
项目摘要/摘要
有迅速积累的证据表明昼夜节律的睡眠,活动和喂养铅的破坏
有害健康后果。虽然昼夜节律的机制得到了很好的研究,但这种关系
在一天的时间提示和诸如饥饿之类的稳态驱动器之间,人们了解得很糟糕。整合
带有营养提示的昼夜节律发生在大脑中的核心时钟细胞下游。
多个行为电路的交点。该提案利用了果蝇的遗传
模型以检查昼夜节信号与进食电路集成到的机制
与喂养行为协调运动节律。果蝇pars Intercerbralis(PI),一个类似物
哺乳动物下丘脑是一个肽吉尼亚的中心,可以接受日期和营养状态
信息。根据已发布和初步发现,PI可能会从
通过神经肽信号以及产生胆碱能的抑制性输入的核心时钟神经元
味道中间神经元。该提议的中心假设是每个肽吉尼亚PI种群
(DH44+,类似胰岛素的肽产生,Sifamide+和Tacotie)接收一组独特的输入,然后必须
集成在PI中以协调行为输出,并且这种整合通过PI内分泌发生
神经肽信号传导。因此,PI种群可能会调节休息:活动节奏和喂养行为
取决于营养状态,以允许对急性环境线索的反应。在这一指导阶段
申请人将表征中央大脑时钟(AIM 1)和Hugin+的连通性
味觉中间神经元(目标2)到PI并检查这些电路中的每个电路如何调节进食和
休息:活动行为(目标1和2)。在该项目的独立阶段,申请人将使用获得的技能
在指导阶段,研究饥饿如何覆盖PI神经元生理和行为的时钟控制
(AIM 3)以及PI内连接性在协调运动节奏和喂养行为中的作用(AIM 4)。到
追求这些目标,申请人将使用包括RNAi和CRISPR在内的遗传工具的组合,
生理测定法,包括电生理学和钙成像,以及运动的行为测定
节奏和喂养。该项目的成功完成将在两级方面提供重要的进步
神经回路和行为。首先,它将开始阐明相交电路如何使用
神经调节性肽。事实证明,神经调节信号传导在哺乳动物系统中很难研究,并且
这项工作可以提供洞察力,这些见解适用于哺乳动物中神经肽区域的研究,尤其是
在下丘脑中。其次,它将促进对昼夜节律和
在电路和行为水平上喂食。不仅了解电路如何塑造行为,还了解如何塑造行为
诸如改变的喂养模式之类的行为反馈到大脑很重要
改善人类健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Annika Fitzpatrick Barber其他文献
Annika Fitzpatrick Barber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Annika Fitzpatrick Barber', 18)}}的其他基金
Sleep and Circadian Rhythm Disorders After Traumatic Brain Injury
脑外伤后的睡眠和昼夜节律紊乱
- 批准号:
10799966 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别:
Integration of circadian and homeostatic signals in a peptidergic circuit in Drosophila
果蝇肽能回路中昼夜节律和稳态信号的整合
- 批准号:
10414063 - 财政年份:2020
- 资助金额:
$ 4.53万 - 项目类别:
Integration of circadian and homeostatic signals in a peptidergic circuit in Drosophila
果蝇肽能回路中昼夜节律和稳态信号的整合
- 批准号:
10200913 - 财政年份:2020
- 资助金额:
$ 4.53万 - 项目类别:
Integration of circadian and homeostatic signals in a peptidergic circuit in Drosophila
果蝇肽能回路中昼夜节律和稳态信号的整合
- 批准号:
10621451 - 财政年份:2020
- 资助金额:
$ 4.53万 - 项目类别:
Integration of sleep-regulating signals by the Drosophila Pars Intercerebralis
果蝇脑间部整合睡眠调节信号
- 批准号:
8905442 - 财政年份:2015
- 资助金额:
$ 4.53万 - 项目类别:
Integration of sleep-regulating signals by the Drosophila Pars Intercerebralis
果蝇脑间部整合睡眠调节信号
- 批准号:
9303232 - 财政年份:2015
- 资助金额:
$ 4.53万 - 项目类别:
Molecular interactions of general anesthetics in voltage-gated sodium channels
电压门控钠通道中全身麻醉药的分子相互作用
- 批准号:
8256005 - 财政年份:2012
- 资助金额:
$ 4.53万 - 项目类别:
Molecular interactions of general anesthetics in voltage-gated sodium channels
电压门控钠通道中全身麻醉药的分子相互作用
- 批准号:
8402063 - 财政年份:2012
- 资助金额:
$ 4.53万 - 项目类别:
相似国自然基金
基于裂隙黄土斜坡模型试验的渐进后退式滑坡成灾机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于裂隙黄土斜坡模型试验的渐进后退式滑坡成灾机理研究
- 批准号:42207184
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
嵌入后退式分离的复杂流动干扰与分离动力学研究
- 批准号:U21B2054
- 批准年份:2021
- 资助金额:260 万元
- 项目类别:联合基金项目
滑模与适定运动统一的稳定条件及基于值函数的受约束切换系统控制研究
- 批准号:61773006
- 批准年份:2017
- 资助金额:51.0 万元
- 项目类别:面上项目
干热河谷冲沟沟头后退的水力、重力协同作用机制
- 批准号:41571277
- 批准年份:2015
- 资助金额:74.0 万元
- 项目类别:面上项目
相似海外基金
Identifying EEG Markers of Altered Interoceptive Processing in Chronic Pain
识别慢性疼痛中内感受处理改变的脑电图标记
- 批准号:
10606187 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别:
Alcohol use, physical activity, and neurophysiological indicators of behavioral adaptability
饮酒、体力活动和行为适应性的神经生理学指标
- 批准号:
10609697 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别:
Patterns and neurocognitive consequences of opioid-alcohol polysubstance use
阿片类酒精多物质使用的模式和神经认知后果
- 批准号:
10659347 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别:
Development of mHealth-Supported Skills Training for Alcohol and Related Suicidality (mSTARS): Emotion Regulation Skills Training to Enhance Acute Psychiatric Care and Recovery
开发移动医疗支持的酒精和相关自杀技能培训 (mSTARS):情绪调节技能培训,以加强急性精神科护理和康复
- 批准号:
10721452 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别:
Understanding the effects of sleep deprivation on the gut's cellular homeostatic process
了解睡眠不足对肠道细胞稳态过程的影响
- 批准号:
10679154 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别: