A machine learning computational approach for developing synchronized EEG and behavior biomarkers in young autistic children
用于开发自闭症儿童同步脑电图和行为生物标志物的机器学习计算方法
基本信息
- 批准号:10523409
- 负责人:
- 金额:$ 8.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-07 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:6 year oldAddressAgeAttentionBehaviorBiologicalBiological MarkersBrainCaregiversChildChild BehaviorClinicalClinical TrialsCodeComputer Vision SystemsComputing MethodologiesDevelopmentDevicesDiscriminationEarly InterventionEarly identificationElectroencephalographyEvent-Related PotentialsExhibitsFaceFacial ExpressionFactor AnalysisFemaleGoalsHeterogeneityIndividualIntellectual functioning disabilityMachine LearningMeasurementMeasuresMethodsMonitorNursery SchoolsOutcomeOutcome MeasureParticipantPathway AnalysisPerformancePhasePhenotypeQuality of lifeReportingResearchRestSamplingScreening procedureSex DifferencesSocial FunctioningSourceStandardizationStimulusStratificationSubgroupTabletsTechnologyTestingVariantVisual evoked cortical potentialautism spectrum disorderautisticautistic childrenbasebehavioral outcomebehavioral responsebiomarker discoverybiomarker performancebrain baseddata acquisitiondesigndigitaldigital healthgazeimprovedimproved outcomeindexinginnovationmachine learning methodmultimodalityneuralneurophysiologynovelresponsescreeningsexsocialsocial attentiontoolvisual tracking
项目摘要
ABSTRACT – Project 3
The overall goal of the Duke Autism Center of Excellence is to use a translational digital health and computational
approach to address the critical need for more effective autism screening tools, objective outcome measures,
and brain-based biomarkers that can be used in clinical trials with young autistic children. Despite significant
advances in understanding the biological basis of autism, clinical trials continue to rely on subjective clinical
observation and caregiver report measures. Objective, biologically based biomarkers are needed for use in
clinical trials that can parse heterogeneity, assess target engagement, and monitor outcomes. Autism biomarker
studies have utilized electroencephalography (EEG) and eye-tracking measures, which have found differences
between autistic and neurotypical individuals in neural and attentional processing of social stimuli. However, to
date, the majority of autism biomarker studies have used independent experimental paradigms and separate
analyses of EEG and gaze. Technical and computational advances, including machine learning and computer
vision analysis, now allow for synchronized measurement and analysis of EEG and behavior, including eye-
tracking, each of which provides distinct sources of information that can be integrated to improve biomarker
performance. Project 3 will use an innovative machine learning computational method to develop a multimodal
biomarker that combines features of EEG activity and synchronized measures of children’s behavior (e.g., social
attention) automatically coded via computer vision analysis. We will test the hypothesis that a multimodal
biomarker will show enhanced discrimination between autistic and neurotypical children compared to biomarkers
based on EEG alone. Standard and novel methods will be used to combine synchronized behavior (digital
phenotypes) and EEG features, with a focus on neural connectivity measured via traditional methods
(coherence, phase-lag index) and new network analysis methods (discriminative cross-spectral factor analysis)
developed by our team. This multimodal approach will be evaluated in 3–6-year-old autistic children without
intellectual disability (ID), age- and sex-matched neurotypical children, and autistic children with ID (IQ <= 70).
Multimodal biomarkers will be compared to three commonly used EEG biomarkers. Our goal is to develop robust,
brain-based biomarkers that can be used in clinical trials to evaluate early interventions for young autistic children
designed to improve outcomes and quality of life.
摘要-项目3
杜克自闭症卓越中心的总体目标是使用一个转化的数字健康和计算
方法,以解决更有效的自闭症筛查工具,客观的结果措施,
以及可用于自闭症儿童临床试验的大脑生物标志物。尽管取得了重大
随着对自闭症生物学基础的理解的进步,临床试验继续依赖于主观的临床试验。
观察和看护者报告措施。目的,需要基于生物学的生物标志物用于
临床试验,可以解析异质性,评估目标参与,并监测结果。自闭症生物标志物
研究利用脑电图(EEG)和眼动跟踪测量,发现差异
自闭症和神经型个体在社会刺激的神经和注意力处理方面的差异。但要
迄今为止,大多数自闭症生物标志物研究都使用独立的实验范式,
EEG和凝视的分析。技术和计算进步,包括机器学习和计算机
视觉分析,现在允许同步测量和分析EEG和行为,包括眼睛,
跟踪,其中每一个都提供了不同的信息源,可以整合这些信息源以改善生物标志物
性能项目3将使用一种创新的机器学习计算方法来开发多模态
结合EEG活动特征和儿童行为同步测量的生物标志物(例如,社会
注意)通过计算机视觉分析自动编码。我们将检验一个多模态
与生物标志物相比,生物标志物将显示自闭症儿童和神经典型儿童之间的区分增强
仅仅根据脑电图。标准和新颖的方法将用于联合收割机同步行为(数字
表型)和EEG特征,重点是通过传统方法测量的神经连接
(相干性、相位滞后指数)和新的网络分析方法(判别交叉谱因子分析)
由我们的团队开发。这种多模式方法将在3-6岁的自闭症儿童中进行评估,
智力残疾(ID)、年龄和性别匹配的神经正常儿童和患有ID(IQ <= 70)的自闭症儿童。
将多模式生物标志物与三种常用的EEG生物标志物进行比较。我们的目标是开发强大的,
基于大脑的生物标志物,可用于临床试验,以评估自闭症儿童的早期干预措施
旨在改善结果和生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kimberly L H Carpenter其他文献
Kimberly L H Carpenter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kimberly L H Carpenter', 18)}}的其他基金
Stratifying the Heterogeneity of Autism Spectrum Disorder: Impact of Co-Occurring Anxiety and ADHD
自闭症谱系障碍的异质性分层:同时发生的焦虑和多动症的影响
- 批准号:
10426046 - 财政年份:2021
- 资助金额:
$ 8.62万 - 项目类别:
Stratifying the Heterogeneity of Autism Spectrum Disorder: Impact of Co-Occurring Anxiety and ADHD
自闭症谱系障碍的异质性分层:同时发生的焦虑和多动症的影响
- 批准号:
10620341 - 财政年份:2021
- 资助金额:
$ 8.62万 - 项目类别:
Neural pathways linking early adversity and preschool psychopathology to adolescent mental health
将早期逆境和学前精神病理学与青少年心理健康联系起来的神经通路
- 批准号:
10449987 - 财政年份:2020
- 资助金额:
$ 8.62万 - 项目类别:
Neural pathways linking early adversity and preschool psychopathology to adolescent mental health
将早期逆境和学前精神病理学与青少年心理健康联系起来的神经通路
- 批准号:
10675466 - 财政年份:2020
- 资助金额:
$ 8.62万 - 项目类别:
Neural pathways linking early adversity and preschool psychopathology to adolescent mental health
将早期逆境和学前精神病理学与青少年心理健康联系起来的神经通路
- 批准号:
10224034 - 财政年份:2020
- 资助金额:
$ 8.62万 - 项目类别:
A machine learning computational approach for developing synchronized EEG and behavior biomarkers in young autistic children
用于开发自闭症儿童同步脑电图和行为生物标志物的机器学习计算方法
- 批准号:
10698197 - 财政年份:2017
- 资助金额:
$ 8.62万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 8.62万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 8.62万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 8.62万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 8.62万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 8.62万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 8.62万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 8.62万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 8.62万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 8.62万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 8.62万 - 项目类别:
Research Grant