Functional connectivity of a brain-scale neural circuit for motion perception

用于运动感知的大脑规模神经回路的功能连接

基本信息

  • 批准号:
    10524593
  • 负责人:
  • 金额:
    $ 193.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-17 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Abstract The transformation of visual cues into appropriate behavior requires the collaboration of diverse neurons across distant brain areas. A fundamental gap in our knowledge about these visuomotor transformations is understanding how these neurons are functionally connected, shaping neural response dynamics that give rise to behavioral output. This gap is due to the inaccessibility of mammalian model systems, in which simultaneous in vivo observation and manipulations across the brain is impossible as well as a lack of real-time computational frameworks that can capture these dynamics. Here, we plan to investigate the brain-scale functional connectivity underlying the visually guided optomotor response (OMR) in the genetically and optically accessible larval zebrafish. Our previous computational brain-scale models generate concrete predictions for circuit composition and connectivity strength between functional cell classes and behavior but fail to capture the individual neural dynamics of this system. Therefore, to generate realistic dynamic models and test these predictions, we propose leveraging integrated methods combining streaming data analysis, volumetric two-photon microscopy, holographic optogenetic manipulation, and training of multi-regional recurrent neural networks (RNNs). Using patterned photostimulation of single and groups of functionally and molecularly identified neurons, while simultaneously recording activity from other hypothesized downstream neurons, we will infer excitability, sign, and synaptic strength from the network's response. In Aim 1, we will first define neurons both functionally and by their neurotransmitter type across the brain including the pretectum, a conserved visual processing area. In Aim 2, we will train biologically constrained RNNs to predict functional connectivity between these neurons, which we will iteratively test and validate by photostimulating automatically selected neural targets while recording resulting neural activity across the pretectum, orchestrated by our streaming analysis software (improv). Next, we will use these integrated methods to map and model the functional connectivity of pretectal neurons with specific, identifiable premotor spinal projection neurons hypothesized to orchestrate specific behavioral aspects. In Aim 3, we will develop online, gradient-based RNN training of recorded neurons to permit real-time testing and refinement of the predicted brain-wide connectivity leading to behavior in individual zebrafish. These computationally integrated experiments will generate predictive dynamic models of how signals from each eye are transformed into behavior. Together, this research will apply innovative computational and all-optical technologies to decode the temporal neural dynamics underlying complex sensorimotor processing, promising essential insights for the development of treatment strategies for neuropsychiatric disorders that are manifested in the neural connectivity across multiple brain areas.
摘要 将视觉线索转化为适当的行为需要不同神经元的协作。 遥远的大脑区域我们对这些视觉转换的认识存在一个根本性的空白, 了解这些神经元在功能上是如何连接的,塑造神经反应动力学, 到行为输出。这一差距是由于哺乳动物模型系统的不可及性,其中同时 在体内观察和操纵整个大脑是不可能的,以及缺乏实时计算 可以捕捉这些动态的框架。在这里,我们计划研究大脑规模的功能连接, 潜在的视觉引导的optomotor反应(OMR)在遗传和光学可访问的幼虫 斑马鱼我们以前的计算大脑规模模型产生具体的预测电路组成 以及功能细胞类别和行为之间的连接强度,但未能捕获单个神经元 这个系统的动态。因此,为了生成真实的动态模型并测试这些预测,我们建议 利用结合流数据分析,体积双光子显微镜, 全息光遗传学操作和多区域递归神经网络(RNN)的训练。使用 单个和多组功能和分子识别的神经元的模式化光刺激, 同时记录来自其他假设的下游神经元的活动,我们将推断兴奋性,信号, 和突触强度的关系。在目标1中,我们将首先从功能和 通过他们大脑中的神经递质类型,包括前顶盖,一个保守的视觉处理区域。在 目标2,我们将训练生物约束的RNN来预测这些神经元之间的功能连接, 我们将通过光刺激自动选择的神经目标来迭代测试和验证, 通过我们的流分析软件, (即兴)。接下来,我们将使用这些综合方法来绘制和模拟前顶盖的功能连接 神经元与特定的,可识别的运动前脊髓投射神经元假设编排特定的 行为方面。在目标3中,我们将开发记录神经元的在线、基于梯度的RNN训练, 实时测试和改进预测的大脑连接,导致个体行为 斑马鱼这些计算集成的实验将产生预测性的动态模型, 每一只眼睛都被转化为行为。总之,这项研究将应用创新的计算和 全光学技术来解码复杂感觉运动背后的时间神经动力学 处理,有前途的基本见解的发展,治疗策略的神经精神 这些疾病表现在多个大脑区域的神经连接上。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eva Aimable Naumann其他文献

Eva Aimable Naumann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eva Aimable Naumann', 18)}}的其他基金

Development of brain-scale neural circuits underlying vertebrate visuomotor transformations
脊椎动物视觉运动转化的大脑规模神经回路的发展
  • 批准号:
    10421132
  • 财政年份:
    2022
  • 资助金额:
    $ 193.25万
  • 项目类别:
Development of brain-scale neural circuits underlying vertebrate visuomotor transformations
脊椎动物视觉运动转化的大脑规模神经回路的发展
  • 批准号:
    10705597
  • 财政年份:
    2022
  • 资助金额:
    $ 193.25万
  • 项目类别:
Real-time, all-optical interrogation of neural microcircuitry in the pretectum
对顶盖神经微电路进行实时、全光学询问
  • 批准号:
    9978318
  • 财政年份:
    2020
  • 资助金额:
    $ 193.25万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 193.25万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 193.25万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 193.25万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 193.25万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 193.25万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 193.25万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 193.25万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 193.25万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 193.25万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 193.25万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了