Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
基本信息
- 批准号:10524202
- 负责人:
- 金额:$ 5.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AreaAutomobile DrivingBiological AssayBiologyCancer EtiologyCause of DeathCell LineCessation of lifeClinicClinicalClinical OncologyComputer ModelsCoupledDataDependenceDirected Molecular EvolutionDiseaseDrug DesignDrug resistanceEcologyEnvironmentEpidermal Growth Factor ReceptorEpidermal Growth Factor Receptor Tyrosine Kinase InhibitorEquationEvolutionFamilyFibroblastsGame TheoryGoalsIndividualInvestigationKnowledgeLaboratoriesLearningLibrariesLightMalignant NeoplasmsMalignant neoplasm of lungMapsMathematicsMeasuresModelingMolecularMolecular ProfilingMutateMutationNon-Small-Cell Lung CarcinomaOncologyOutcomePatientsPharmaceutical PreparationsPhenotypePlayPopulationProcessProtocols documentationPublicationsResearchResearch Project GrantsResistanceSecondary toSeedsSolid NeoplasmTechniquesTestingTimeToxic effectTranslatingTranslationsTyrosine Kinase Inhibitoranticancer researchbasecancer cellcancer typeclinical applicationclinical developmentclinically relevantdesigndrug discoverydrug sensitivityeffective therapyexperienceexperimental studyimprovedin vivoinnovationinsightlife historymathematical modelmultidisciplinaryneoplastic cellnovel strategiesnovel therapeuticsobjective response ratepersonalized medicinepressurepreventreplicatorresistance mechanismtargeted agenttargeted treatmenttime usetreatment strategytumortumor heterogeneitytumor progression
项目摘要
ABSTRACT
Lung cancer is the leading cause of cancer deaths in the USA, with an estimated 158,000 deaths in 2016. The
direct cause of the majority of these deaths is the eventual emergence of resistance to initially effective therapies.
This evolution of drug resistance represents one of the greatest unmet needs in oncology. While most research
is focused on the individual molecular alterations that confer this resistance, we instead propose to focus on the
eco-evolutionary processes that generate these alterations. To study the Darwinian evolution and ecological
interactions occurring within heterogeneous tumors, we will tightly integrate bespoke mathematical models and
experimental techniques designed to inform them. Focusing on EGFR mutated non-small cell lung cancer, a
cancer type with a highly efficacious targeted therapy with which we have experience in our lab, we will approach
this problem with three, orthogonal, integrated mathematical-experimental Aims. First, to understand the
ecological interactions occurring at the inter-cellular level in heterogeneous tumors, we will couple our experience
with evolutionary game theory with our first-in-class evolutionary game assay, which we have designed to
specifically for this purpose. Here, we hope to learn to target the interactions that drive resistance – a novel
strategy which could open up entirely new avenues of drug design. Second, we will allow evolution to show us
the convergent phenotypes it creates in the face of specific selective pressures through long-term directed
evolution. During this long-term evolution, we will measure phenotype, in the form of drug sensitivity to a panel
of chemotherapeutics and targeted therapies at regular intervals, creating the first temporal collateral sensitivity
map in any solid tumor. By pooling common phenotypes observed throughout the evolutionary life history, we
will then use interactomic and seed-based protocols to generate molecular signatures of these states of
sensitivity, which we will validate in publicly available data and in an in library of PDX lines. Finally, we will delve
deeply into the relevant time scales of the ecological and evolutionary processes we study in the first two aims.
We plan to apply the replicator-mutator framework of evolutionary game theory to a spatial transform that we
pioneered in cancer. To validate and parameterize these models, we will also test the evolutionary stability of
the ecological dynamics we measure with our game assay by performing the assay through evolutionary time
during a long-term evolution experimental. Each of our three orthogonal aims is supported by recent high impact
publications, and each represent tightly coupled experimental and computational protocols. Our clean, well-
designed integration, together with innovative focus on the direct study of the evolutionary biology, promises to
shed light on this difficult area of cancer research, and offers the possibility of providing generalizable insights.
摘要
肺癌是美国癌症死亡的主要原因,2016年估计有15.8万人死亡。这个
这些死亡中的大多数直接原因是最终出现了对最初有效的治疗方法的抗药性。
这种耐药性的演变代表了肿瘤学中最大的未得到满足的需求之一。虽然大多数研究
集中在赋予这种抗性的单个分子改变上,所以我们建议把重点放在
产生这些变化的生态进化过程。研究达尔文进化论和生态学
发生在异质肿瘤内的相互作用,我们将紧密集成定制的数学模型和
设计用来告知它们的实验技术。关注EGFR突变的非小细胞肺癌
癌症类型,我们在实验室有经验的高效靶向治疗,我们将接近
这个问题有三个正交的、综合的数学实验目标。首先,要了解
在异质肿瘤中细胞间发生的生态相互作用,我们将结合我们的经验
用进化博弈论和我们一流的进化博弈分析,我们设计了
特别是为了这个目的。在这里,我们希望学习如何瞄准驱动耐药性的相互作用--一种新的
这一战略可能会为药物设计开辟全新的途径。第二,我们将允许进化论向我们展示
它在面对特定选择压力时通过长期定向创造的趋同表型
进化论。在这一长期的进化过程中,我们将以小组药物敏感性的形式来测量表型
定期进行化疗和靶向治疗,创造了第一个暂时性侧支敏感性
在任何实体肿瘤中进行映射。通过汇集在整个进化生命历史中观察到的共同表型,我们
然后将使用交互和基于种子的协议来生成这些状态的分子签名
灵敏度,我们将在公开可用的数据中和在PDX线路库中进行验证。最后,我们将深入研究
深入到我们在前两个目标中研究的生态和进化过程的相关时间尺度。
我们计划将进化博弈论的复制者-变异者框架应用于我们
是癌症领域的先驱。为了验证和参数化这些模型,我们还将测试
我们用博弈分析通过进化时间执行分析来测量生态动态
在一项长期的进化实验中。我们的三个正交目标中的每一个都得到了最近的高影响力的支持
出版物,每一种都代表紧密耦合的实验和计算协议。我们干净的,好的-
精心设计的整合,加上对进化生物学直接研究的创新关注,有望
阐明了癌症研究的这一困难领域,并提供了提供概括性见解的可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Gardinier Scott其他文献
Jacob Gardinier Scott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacob Gardinier Scott', 18)}}的其他基金
Project 2: Transcriptional Dynamics and Temporal Reprogramming During Radiation Treatment
项目 2:放射治疗期间的转录动力学和时间重编程
- 批准号:
10526304 - 财政年份:2022
- 资助金额:
$ 5.67万 - 项目类别:
Project 2: Transcriptional Dynamics and Temporal Reprogramming During Radiation Treatment
项目 2:放射治疗期间的转录动力学和时间重编程
- 批准号:
10704714 - 财政年份:2022
- 资助金额:
$ 5.67万 - 项目类别:
Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
- 批准号:
10737854 - 财政年份:2019
- 资助金额:
$ 5.67万 - 项目类别:
Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
- 批准号:
10381296 - 财政年份:2019
- 资助金额:
$ 5.67万 - 项目类别:
Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
- 批准号:
10064023 - 财政年份:2019
- 资助金额:
$ 5.67万 - 项目类别:
Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
- 批准号:
10528617 - 财政年份:2019
- 资助金额:
$ 5.67万 - 项目类别:
Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
- 批准号:
10533732 - 财政年份:2019
- 资助金额:
$ 5.67万 - 项目类别:
Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
- 批准号:
10312107 - 财政年份:2019
- 资助金额:
$ 5.67万 - 项目类别:
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 5.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 5.67万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 5.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 5.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




