Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
基本信息
- 批准号:10737854
- 负责人:
- 金额:$ 11.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AreaAutomobile DrivingBiological AssayBiologyCancer EtiologyCause of DeathCell LineCessation of lifeClinicClinicalClinical OncologyComputer ModelsCoupledDataDependenceDirected Molecular EvolutionDiseaseDrug DesignDrug resistanceEcologyEnvironmentEpidermal Growth Factor ReceptorEpidermal Growth Factor Receptor Tyrosine Kinase InhibitorEquationEvolutionExperimental DesignsFamilyFibroblastsGame TheoryGoalsIndividualInvestigationKnowledgeLaboratoriesLearningLibrariesMalignant NeoplasmsMalignant neoplasm of lungMapsMathematicsMeasuresModelingMolecularMolecular ProfilingMutateMutationNon-Small-Cell Lung CarcinomaOncologyOutcomePatientsPharmaceutical PreparationsPhenotypePlayPopulationProcessProtocols documentationPublicationsResearchResearch Project GrantsResistanceSecondary toShapesSolid NeoplasmTechniquesTestingTherapeuticTimeToxic effectTranslatingTranslationsTyrosine Kinase Inhibitoranticancer researchcancer cellcancer typeclinical applicationclinical developmentclinically relevantdesigndrug discoverydrug sensitivityeffective therapyexperienceexperimental studyimprovedin vivoinnovationinsightlife historymathematical modelmultidisciplinaryneoplastic cellnovel strategiesnovel therapeuticsobjective response ratepersonalized medicinepressurepreventreplicatorresistance mechanismtargeted agenttargeted treatmenttime usetreatment strategytumortumor heterogeneitytumor progression
项目摘要
ABSTRACT
Lung cancer is the leading cause of cancer deaths in the USA, with an estimated 158,000 deaths in 2016. The
direct cause of the majority of these deaths is the eventual emergence of resistance to initially effective therapies.
This evolution of drug resistance represents one of the greatest unmet needs in oncology. While most research
is focused on the individual molecular alterations that confer this resistance, we instead propose to focus on the
eco-evolutionary processes that generate these alterations. To study the Darwinian evolution and ecological
interactions occurring within heterogeneous tumors, we will tightly integrate bespoke mathematical models and
experimental techniques designed to inform them. Focusing on EGFR mutated non-small cell lung cancer, a
cancer type with a highly efficacious targeted therapy with which we have experience in our lab, we will approach
this problem with three, orthogonal, integrated mathematical-experimental Aims. First, to understand the
ecological interactions occurring at the inter-cellular level in heterogeneous tumors, we will couple our experience
with evolutionary game theory with our first-in-class evolutionary game assay, which we have designed to
specifically for this purpose. Here, we hope to learn to target the interactions that drive resistance – a novel
strategy which could open up entirely new avenues of drug design. Second, we will allow evolution to show us
the convergent phenotypes it creates in the face of specific selective pressures through long-term directed
evolution. During this long-term evolution, we will measure phenotype, in the form of drug sensitivity to a panel
of chemotherapeutics and targeted therapies at regular intervals, creating the first temporal collateral sensitivity
map in any solid tumor. By pooling common phenotypes observed throughout the evolutionary life history, we
will then use interactomic and seed-based protocols to generate molecular signatures of these states of
sensitivity, which we will validate in publicly available data and in an in library of PDX lines. Finally, we will delve
deeply into the relevant time scales of the ecological and evolutionary processes we study in the first two aims.
We plan to apply the replicator-mutator framework of evolutionary game theory to a spatial transform that we
pioneered in cancer. To validate and parameterize these models, we will also test the evolutionary stability of
the ecological dynamics we measure with our game assay by performing the assay through evolutionary time
during a long-term evolution experimental. Each of our three orthogonal aims is supported by recent high impact
publications, and each represent tightly coupled experimental and computational protocols. Our clean, well-
designed integration, together with innovative focus on the direct study of the evolutionary biology, promises to
shed light on this difficult area of cancer research, and offers the possibility of providing generalizable insights.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Gardinier Scott其他文献
Jacob Gardinier Scott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacob Gardinier Scott', 18)}}的其他基金
Project 2: Transcriptional Dynamics and Temporal Reprogramming During Radiation Treatment
项目 2:放射治疗期间的转录动力学和时间重编程
- 批准号:
10526304 - 财政年份:2022
- 资助金额:
$ 11.93万 - 项目类别:
Project 2: Transcriptional Dynamics and Temporal Reprogramming During Radiation Treatment
项目 2:放射治疗期间的转录动力学和时间重编程
- 批准号:
10704714 - 财政年份:2022
- 资助金额:
$ 11.93万 - 项目类别:
Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
- 批准号:
10381296 - 财政年份:2019
- 资助金额:
$ 11.93万 - 项目类别:
Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
- 批准号:
10064023 - 财政年份:2019
- 资助金额:
$ 11.93万 - 项目类别:
Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
- 批准号:
10528617 - 财政年份:2019
- 资助金额:
$ 11.93万 - 项目类别:
Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
- 批准号:
10533732 - 财政年份:2019
- 资助金额:
$ 11.93万 - 项目类别:
Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
- 批准号:
10524202 - 财政年份:2019
- 资助金额:
$ 11.93万 - 项目类别:
Exploiting Ecology and Evolution to Prevent Therapy Resistance in EGFR-Driven Lung Cancer
利用生态学和进化来预防 EGFR 驱动的肺癌的治疗耐药性
- 批准号:
10312107 - 财政年份:2019
- 资助金额:
$ 11.93万 - 项目类别:
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 11.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 11.93万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 11.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 11.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




