Defining mechanisms of mitotic spindle organization in Naegleria
耐格里虫有丝分裂纺锤体组织的定义机制
基本信息
- 批准号:10537005
- 负责人:
- 金额:$ 6.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAmoeba genusAnimalsArchitectureAutomobile DrivingBiochemicalBiologicalBiologyBrainBrain InjuriesCase Fatality RatesCategory B pathogenCell ProliferationCell divisionCellsCellular StructuresCellular biologyChromosomesDataDevelopmentDiseaseDisease ProgressionDrug TargetingEatingElectron MicroscopyEnsureFatality rateFutureGene ExpressionGene ProteinsGenesGoalsHeat-Shock ResponseHigh-Throughput Nucleotide SequencingHumanImageInfectionKnowledgeLeadLearningLengthMeasurementMeasuresMentorsMethodsMicroscopyMicrotubule StabilizationMicrotubule stabilizing agentMicrotubulesMitosisMitoticMitotic spindleMolecularMolecular MotorsMorphologyMotorNaegleriaNaegleria fowleriNational Institute of Allergy and Infectious DiseaseOrganismPharmaceutical PreparationsPhenotypePlayPopulationProcessProteinsProtocols documentationQuantitative MicroscopyRNA SplicingResearch PersonnelResolutionRiskRoleRunningSequence AnalysisSourceStructureTechniquesTestingTherapeuticTrainingTubulinantimicrobialbasecareercareer developmenteffective therapyexperienceinhibitorknock-downside effectskill acquisitionsuccesstemporal measurementtherapeutic developmenttherapeutically effectivetherapy developmenttranscriptome sequencingtranscriptomics
项目摘要
Project Summary
The “brain-eating amoeba” Naegleria fowleri causes a disease with a 97% fatality rate. Current
treatments are not reliable and risk significant side effects, including brain damage. Because cell proliferation is
essential for disease progression, and the microtubule network in Naegleria has evolutionarily diverged from
that in humans, targeting the mitotic spindle is a promising strategy to develop effective therapeutics with
limited side effects. However, we lack key information about the basic cell biological mechanisms that organize
the Naegleria mitotic spindle, hampering progress towards rational therapies. In particular, dynamic
microtubule turnover is critical in other cells for assembling a bipolar spindle, but it is not known to what extent
the Naegleria spindle relies on microtubule dynamics. A major obstacle is that inhibitors that block microtubule
dynamics in other species are ineffective against Naegleria’s divergent tubulins. Further, while microtubule
motor proteins play key roles in assembling spindles from diverse species, the function or even the identity of
microtubule motors within the Naegleria spindle is completely unknown. Lack of knowledge about the
mechanistic contributions of microtubule turnover and molecular motors to Naegleria spindle organization
constrains identifying key proteins and processes to target for antimicrobial development.
This proposal will address this knowledge gap by testing the hypothesis that microtubule dynamics and
molecular motors both contribute to Naegleria spindle organization. To identify the role of microtubule
dynamics, microtubules will be stabilized with a class of inhibitors that was recently shown to block Naegleria
cell division, and the effect on the organization of the spindle will be measured with super-resolution
microscopy. Comparing untreated and drug-treated spindles at different mitotic stages will reveal which stages
require microtubule turnover. To determine the function of molecular motors in the spindle, motor genes
upregulated during cell division will be identified with RNA sequencing of mitotically synchronized Naegleria
cultures. These motors will be knocked down, and phenotypes scored by microscopy. The proposed project
will provide comprehensive training to prepare the applicant for a career as an independent investigator. With
support from a sponsor, who is a Naegleria expert, and a co-sponsor, who has decades of experience studying
cell division, the applicant will learn: new experimental techniques, such as super-resolution microscopy and
high-throughput sequencing; new conceptual approaches, including the biology of microtubules and mitosis;
and career development skills. This proposal will determine the impact of microtubule stabilization on the
Naegleria spindle and will identify the role of spindle associated molecular motors in spindle organization,
providing new targets for future treatments for the devastating disease caused by Naegleria.
项目摘要
“食脑阿米巴”福氏耐格里阿米巴(Naegleria fowleri)引起的疾病死亡率高达97%。电流
治疗方法并不可靠,而且有可能产生严重的副作用,包括脑损伤。因为细胞增殖是
对于疾病进展至关重要,耐格里属的微管网络在进化上已经从
在人类中,靶向有丝分裂纺锤体是开发有效治疗方法的一种有前途的策略,
副作用有限。然而,我们缺乏关于组织的基本细胞生物学机制的关键信息,
耐格里属有丝分裂纺锤体,阻碍了合理治疗的进展。特别是,动态
在其他细胞中,微管周转对于组装双极纺锤体是至关重要的,但尚不清楚在何种程度上
耐格里属纺锤体依赖于微管动力学。一个主要的障碍是,
在其他物种中的动力学对耐格里属的分歧微管蛋白无效。此外,虽然微管
马达蛋白在不同物种的纺锤体组装中起着关键作用,
奈格里藻纺锤体内的微管马达是完全未知的。缺乏关于
微管周转和分子马达对耐格里藻纺锤体组织的作用机制
限制了确定抗菌剂开发的关键蛋白质和过程。
这项提案将通过检验微管动力学和细胞周期的假设来解决这一知识缺口。
分子马达都有助于耐格里属纺锤体组织。确定微管的作用
动力学,微管将被稳定与一类抑制剂,最近被证明可以阻止奈格莱里亚
细胞分裂,以及对纺锤体组织的影响将用超分辨率测量
显微镜比较未处理和药物处理的纺锤体在不同的有丝分裂阶段将揭示哪些阶段
需要微管周转。为了确定纺锤体中分子马达的功能,
在细胞分裂过程中上调将通过有丝分裂同步的耐格里属的RNA测序来鉴定
cultures.这些马达将被击倒,并通过显微镜对表型进行评分。拟建项目
将提供全面的培训,以准备申请人的职业生涯作为一个独立的调查员。与
来自赞助商的支持,谁是耐格里专家,和共同赞助商,谁有几十年的研究经验,
细胞分裂,申请人将学习:新的实验技术,如超分辨率显微镜和
高通量测序;新的概念方法,包括微管和有丝分裂的生物学;
和职业发展技能。这项建议将确定微管稳定对细胞增殖的影响。
耐格里属纺锤体,并将确定纺锤体相关的分子马达在纺锤体组织中的作用,
为未来治疗耐格里属引起的毁灭性疾病提供了新的靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Steven Kennard其他文献
Andrew Steven Kennard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 6.72万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 6.72万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 6.72万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 6.72万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 6.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 6.72万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 6.72万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别:
Studentship














{{item.name}}会员




