Elucidating the neurochemical basis of LTP induction and maintenance in vivo
阐明体内 LTP 诱导和维持的神经化学基础
基本信息
- 批准号:10534841
- 负责人:
- 金额:$ 4.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectArtificial IntelligenceBiological ProcessBrain InjuriesCell NucleusCellsConflict (Psychology)Corpus striatum structureDataDevicesDopamineDopamine AntagonistsDopamine-beta-monooxygenaseElectric StimulationElectrochemistryElectrophysiology (science)Hippocampus (Brain)In VitroIndividualInterventionInvestigationLong-Term PotentiationMaintenanceMeasuresMediatingMediator of activation proteinMemoryMethodsMicrodialysisMicroelectrodesModelingMolecularNeuronsNeurosciencesNeurotransmittersNorepinephrineOxidation-ReductionPharmacologyPhasePhysiologicalPhysiologyPlayPulvinar structureRattusReactionResolutionRoleSample SizeSamplingScanningSignal TransductionTechniquesTestingTimeTissuesTrainingValidationbasecarbon fiberexperienceextracellularin vivoin vivo Modelinhibitorinsightlocus ceruleus structurememory consolidationmemory encodingneurochemistryneuroregulationnoradrenergicnoveloxidationreceptorreuptakesignal processingspatiotemporal
项目摘要
PROJECT SUMMARY
Norepinephrine (NE)-containing neuronal cells in the locus coeruleus (LC) are thought to co-release dopamine (DA) from
many of its projections, including into the hippocampus. Through DA and NE release, the LC is thought to play a major
role in modulating hippocampal memory encoding through the maintenance of long-term potentiation (LTP), an integral
mechanism for memory consolidation. Understanding the mechanisms by which the LC modulates memory is of
fundamental importance to investigations into hippocampal memory circuitry and dynamics. However, because of their
structural similarity, it has been difficult to ascertain the precise roles that DA and NE each have on LTP maintenance. In
vivo microdialysis has been traditionally used in the past to measure tonic extracellular concentrations of molecules in the
brain, but damage to tissue because of the size of the sampling probe and low spatiotemporal resolution make real-time
tracking of tonic neurotransmitter concentrations, and their biological functions, problematic. Our lab has developed state-
of-the-art voltammetric techniques capable of measuring tonic concentrations of neurotransmitters in real-time with very
high spatial resolution. We hypothesize that by altering the voltammetric waveform applied in vivo and by developing a
novel artificial intelligence based post-processing pipeline, very similar analytes such as DA and NE can be reliably
resolved. Through accurate neurotransmitter identification and pharmacologic manipulation, we aim to ascertain the specific
effects NE and DA have on hippocampal LTP. Additionally, we hypothesize that electrical stimulation of the LC will lead
to increased hippocampal DA and NE release and enhanced LTP induction compared to no stimulation. The ability to
resolve individual analytes based on their voltammetric signals has been an unsolved problem in electrochemistry and will
enable tracking of their relative real-time contributions to LTP induction and maintenance in the hippocampus with high
accuracy. A greater understanding of LTP induction and maintenance mechanisms is of vital importance to garnering an
increased understanding of memory circuitry and physiology.
项目摘要
蓝斑(LC)中含有去甲肾上腺素(NE)的神经元细胞被认为与多巴胺(DA)共释放。
它的许多投射,包括进入海马体。通过DA和NE的释放,LC被认为是主要的
通过维持长时程增强(LTP)(一种不可或缺的机制),
记忆巩固的机制。了解LC调节记忆的机制,
对海马记忆电路和动力学的研究至关重要。然而,由于其
由于结构相似,很难确定DA和NE各自在LTP维持中的确切作用。在
体内微透析在过去传统上用于测量细胞中分子的紧张性细胞外浓度
但是由于采样探针的尺寸和低时空分辨率而对组织造成的损伤使得实时
对紧张性神经递质浓度及其生物学功能的追踪是有问题的。我们的实验室已经开发出-
最先进的伏安技术能够实时测量神经递质的紧张浓度,
高空间分辨率。我们假设,通过改变体内应用的伏安波形,并通过开发一种
新的基于人工智能的后处理管道,可以可靠地分析非常相似的分析物,如DA和NE。
解决了通过准确的神经递质鉴定和药理学操作,我们的目标是确定特异性神经递质,
NE和DA对海马LTP的影响。此外,我们假设LC的电刺激将导致
增加海马DA和NE释放和增强LTP诱导相比,没有刺激。的能力
基于它们的伏安信号来解析各个分析物一直是电化学中未解决的问题,
能够跟踪它们对海马中LTP诱导和维持的相对实时贡献,
精度更好地理解LTP的诱导和维持机制对于获得
增加对记忆电路和生理学的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abhinav Goyal其他文献
Abhinav Goyal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 4.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)