Engineering Highly Functional Pre-Vascularized Human Skeletal Muscle for In Vitro and In Vivo Applications
工程设计用于体外和体内应用的高功能预血管化人体骨骼肌
基本信息
- 批准号:10535766
- 负责人:
- 金额:$ 3.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffectAttenuatedBiomimeticsBlood VesselsBlood capillariesBlood flowCell TherapyCell physiologyCellsCoculture TechniquesComplexDiseaseDisease modelDorsalEndothelial CellsEngineeringErythrocytesFibroblastsFoundationsFutureGenerationsHarvestHeterogeneityHistologicHumanHuman EngineeringImageImmunocompromised HostImplantIn SituIn VitroInjectionsInjuryIschemiaLabelLaboratoriesLigandsMaintenanceMetabolismMethodsModelingMusMuscleMuscle DevelopmentMuscle FibersMuscle satellite cellMyoblastsNOTCH3 geneNeuromuscular JunctionNude MicePathway interactionsPerfusionPhenotypePopulationProtocols documentationRattusRecovery of FunctionRegenerative capacityRegenerative responseRodentRoleSignal TransductionSiteSkeletal MuscleSkeletal MyoblastsSupporting CellTestingTherapeuticTimeTissue EngineeringTissue SurvivalTissuesToxinTreatment EfficacyVascularizationWorkalpha Toxinbioscaffoldcell typecomparativedensitydesigndrug discoveryendothelial stem cellexperiencehuman modelimplantationimprovedin vivoin vivo Modelinduced pluripotent stem cellintravital imagingmuscle engineeringmuscle formmuscle regenerationmuscular structureneurovascularnotch proteinprogenitorreceptorregenerativeregenerative therapyrepairedresponseresponse to injurysatellite cellsingle-cell RNA sequencingstemnesstibialis anterior muscletranscriptomicsvolumetric muscle loss
项目摘要
Abstract
Current models of engineered human skeletal muscle mainly consist of myogenic cells and fibroblasts
which are grown in various types of natural or synthetic biomaterial scaffolds. The simplified cellular makeup of
these tissues can limit their utility in disease modeling and regenerative therapies, which can be improved by
incorporating additional muscle-resident cell types such as vascular cells. However, to date, no studies have
demonstrated successful in vitro vascularization of mature functional engineered muscle without loss of
contractile function. The Bursac lab has been the first to engineer contractile human skeletal muscle tissues
(“myobundles”) made of primary human myoblasts or induced pluripotent stem cell-derived muscle progenitors.
My preliminary results show that under optimized conditions, mixing myoblasts with 5% endothelial progenitor
cells (EPCs) at the time of tissue formation produces vascularized tissues with contractile function comparable
to that of muscle-only controls. Importantly, with time of culture, robust vascular networks formed throughout the
myobundle volume undergo early lumen formation. Building on these promising results, I will test the hypotheses
that engineering dense capillary networks inside highly functional engineered human muscle will: 1) support the
maintenance of the muscle stem cell (satellite cell, SC) niche and enhance in vitro regenerative capacity of
myobundles and 2) accelerate vascularization and perfusion of myobundle implants to improve their survival and
therapeutic efficacy in volumetric muscle loss (VML) injury model in vivo. Specifically, I will characterize the effect
of myobundle-EPC coculture on the transcriptomic profile of resident SCs using single cell RNA-sequencing and
will investigate vascularization-induced changes in SC activation and muscle regeneration in response to a toxin
injury. In immunocompromised mice in vivo, I will analyze how establishment of blood flow through pre-
vascularized myobundle implants affects SC phenotype and will further assess potential of implanted
myobundles to induce repair of VML injury in the tibialis anterior muscle. If successful, this work will establish
the first biomimetic model of highly functional, vascularized human skeletal muscle tissue and will provide a
foundation for future pursuits of engineered muscle therapies for VML.
抽象的
当前的工程人骨骼肌模型主要由肌源性细胞和成纤维细胞组成
在各种类型的天然或合成生物材料支架中生长。简化的细胞构成
这些组织可以限制其在疾病建模和再生疗法中的效用,可以通过
结合其他肌肉居民细胞类型,例如血管细胞。但是,迄今为止,还没有研究
证明了成熟功能性工程肌肉的成功体外血管化而没有损失
收缩功能。 Bursac实验室是第一个设计收缩人类骨骼肌肉组织的人
(“ myobundles”)由原代人肌细胞或诱导多能干细胞衍生的肌肉祖细胞制成。
我的初步结果表明,在优化条件下,将成肌细胞与5%内皮祖细胞混合
组织形成时的细胞(EPC)产生具有收缩功能可比的血管化时间
仅肌肉对照。重要的是,随着文化的时间,整个过程中形成了强大的血管网络
MyObundle体积发生早期的管腔形成。在这些承诺结果的基础上,我将测试假设
高度功能的人体肌肉中的工程密集毛细管网络将:1)支持
维持肌肉干细胞(卫星细胞,SC)生态位并增强体外再生能力的
肌收发板和2)加速肌动物的血管化和灌注,以提高其生存和
体内体积肌肉损失(VML)损伤模型的治疗效率。具体来说,我将表征效果
Myobundle-EPC共培养在居民SC的转录组概况上使用单细胞RNA-sequing和
将研究血管化引起的SC激活和肌肉再生的变化,以响应毒素
在体内免疫功能低下的小鼠中,我将分析血液流动通过前的建立
血管化的myobundle Imprans会影响SC表型,并将进一步评估植入的潜力
肌收入诱导胫骨前肌的VML损伤修复。如果成功,这项工作将确定
高度功能,血管化的人骨骼肌组织的第一个仿生模型,将提供
为VML的工程肌肉疗法的未来追求基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Torie M Broer其他文献
Torie M Broer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Torie M Broer', 18)}}的其他基金
Engineering Highly Functional Pre-Vascularized Human Skeletal Muscle for In Vitro and In Vivo Applications
工程设计用于体外和体内应用的高功能预血管化人体骨骼肌
- 批准号:
10663067 - 财政年份:2022
- 资助金额:
$ 3.95万 - 项目类别:
相似国自然基金
污水处理厂出水中溶解性微生物产物对残留抗生素在河流中衰减过程的影响机制研究
- 批准号:52270090
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
快速和缓慢衰减El Niño事件对春季MJO活动的影响及机理研究
- 批准号:42205045
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
车用燃料电池催化层孔尺度结构衰减对健康服役影响机制研究
- 批准号:52276171
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
车用燃料电池催化层孔尺度结构衰减对健康服役影响机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
垫片损伤对PEM燃料电池性能衰减的影响与机理研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10586599 - 财政年份:2023
- 资助金额:
$ 3.95万 - 项目类别:
Nanowired humam cardiac organoid derived exosomes for heart repair
纳米线人类心脏类器官衍生的外泌体用于心脏修复
- 批准号:
10639040 - 财政年份:2023
- 资助金额:
$ 3.95万 - 项目类别:
Multifunctional Nanoparticle Platform to Prevent Alcohol-Associated HCC Development
多功能纳米颗粒平台可预防酒精相关的 HCC 发展
- 批准号:
10736984 - 财政年份:2023
- 资助金额:
$ 3.95万 - 项目类别:
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
- 批准号:
10822502 - 财政年份:2023
- 资助金额:
$ 3.95万 - 项目类别:
Using cellular co-biosis and age programmable mice to derive a global interaction map of aging hallmarks
使用细胞共生和年龄可编程小鼠来得出衰老标志的全局相互作用图
- 批准号:
10721454 - 财政年份:2023
- 资助金额:
$ 3.95万 - 项目类别: