Structural and Molecular Mechanisms of Stress Fiber Repair
应力纤维修复的结构和分子机制
基本信息
- 批准号:10536382
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsArchitectureAsthmaBindingBiochemicalBiological AssayBiophysical ProcessBiophysicsBlood VesselsC-terminalCell ShapeCell-Matrix JunctionCellsCellular AssayCryoelectron MicroscopyCytoplasmCytoskeletonDetectionDevelopmentDiseaseElectron MicroscopyEnvironmentEpithelialEquilibriumEventF-ActinFeedbackFibrosisFluorescence MicroscopyFunctional disorderGene Expression RegulationHeartHeart DiseasesHomeostasisHypertensionIn SituIn VitroIndividualLeadLightLobular NeoplasiaLongitudinal StudiesLungMechanicsMediatingMethodsMicrofilamentsMolecularMolecular ConformationMorphogenesisMyosin ATPaseN-terminalPathway interactionsPhysical condensationPhysical environmentPhysiologicalPhysiological ProcessesPlayPolymersProcessPropertyProtein FamilyProteinsRegulationRoleRuptureSignal TransductionSiteStress FibersTertiary Protein StructureTestingTimeTissuesWorkZYX genealpha Actinincrosslinkelectron tomographyextracellularfiber cellinsightlink proteinmechanical forcemechanical signalmechanical stimulusmechanotransductionnovelpolymerizationreconstitutionrecruitrepairedtargeted treatmenttherapeutic developmenttherapy developmenttoolvasodilator-stimulated phosphoprotein
项目摘要
PROJECT SUMMARY
For tissues to maintain a physical steady-state equilibrium with its dynamic surroundings (“mechanical
homeostasis”), individual cells must be able to perceive mechanical cues in their local environment and respond
accordingly. Mechanical homeostasis plays an essential role in morphogenesis, and its dysregulation can lead
to disease states such as hypertension, fibrosis, and asthma. While there has been significant progress in
understanding the physiological significance of mechanical homeostasis and cellular mechanosensation, the
molecular mechanisms by which proteins convert mechanical stimuli into biochemical signals
(“mechanotransduction”) are poorly understood, impeding the development of targeted therapeutics for
dysregulated mechanotransduction and its disease states.
The actin cytoskeleton plays a prominent role in mechanotransduction, notably actin-myosin cables
known as stress fibers (SFs) which both actively generate contractile forces and transmit extracellular forces
impinging on cell-cell and cell-matrix adhesions into the cytoplasm. Dynamic regulation of SF assembly,
disassembly, and contractility are important for many physiological processes involving cellular mechanics and
dynamic cell shape changes, such as epithelial tissue homeostasis and morphogenesis. Stochastic mechanical
imbalance in SFs can result in mechanically-induced ruptures, termed stress fiber strain site (SFSS). While some
SFSS proceed towards catastrophic breakage, the majority are repaired by zyxin, a mechanosensitive LIM (LIN-
11, Isl-1, & Mec-3) protein. Zyxin first localizes to strain sites through its three C-terminal tandem LIM domains,
then recruits the cross-linking protein ɑ-actinin and polymerization factor VASP through its N-terminal domains
to mediate SF repair in a matter of minutes. While there is evidence for this sequence of events at the cellular
level, the biophysical mechanism of zyxin-mediated SF repair is not well understood. Furthermore, the
architectural features of a SFSS which are recognized by zyxin’s LIM domains are unknown.
Here I propose to determine the molecular and structural mechanism of zyxin-mediated SF repair.
Through biophysical reconstitution and cellular assays, I will test the hypothesis that zyxin, α-actinin, and VASP
directly co-assemble to repair mechanically damaged actin filaments and determine the biophysical mechanism
of zyxin-mediated mechanical homeostasis (Aim 1). I will then apply cutting-edge correlative cryo-light electron
microscopy to test the hypothesis that zyxin binds to a force-dependent actin conformation we have observed in
vitro (Aim 2). In addition to providing specific insights into mechanical homeostasis of SFs, these studies are
also likely to reveal general mechanisms of mechanotransduction through the cytoskeleton. In the longer term,
this work will guide the development of therapeutics against dysregulated mechanotransduction pathways.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donovan Yong Zhi Phua其他文献
Donovan Yong Zhi Phua的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donovan Yong Zhi Phua', 18)}}的其他基金
Structural and Molecular Mechanisms of Stress Fiber Repair
应力纤维修复的结构和分子机制
- 批准号:
10707029 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
相似海外基金
Integrative Genomics Approaches to Model the Genetic Architecture of Asthma
综合基因组学方法来模拟哮喘的遗传结构
- 批准号:
8955243 - 财政年份:2014
- 资助金额:
$ 4.68万 - 项目类别:
Integrative Genomics Approaches to Model the Genetic Architecture of Asthma
综合基因组学方法模拟哮喘的遗传结构
- 批准号:
8847988 - 财政年份:2014
- 资助金额:
$ 4.68万 - 项目类别:
INTEGRATIVE GENOMICS APPROACHES TO MODEL THE GENETIC ARCHITECTURE OF ASTHMA
综合基因组学方法来模拟哮喘的遗传结构
- 批准号:
8724089 - 财政年份:2013
- 资助金额:
$ 4.68万 - 项目类别:
INTEGRATIVE GENOMICS APPROACHES TO MODEL THE GENETIC ARCHITECTURE OF ASTHMA
综合基因组学方法来模拟哮喘的遗传结构
- 批准号:
8727091 - 财政年份:2013
- 资助金额:
$ 4.68万 - 项目类别:
INTEGRATIVE GENOMICS APPROACHES TO MODEL THE GENETIC ARCHITECTURE OF ASTHMA
综合基因组学方法来模拟哮喘的遗传结构
- 批准号:
8299478 - 财政年份:2011
- 资助金额:
$ 4.68万 - 项目类别:
INTEGRATIVE GENOMICS APPROACHES TO MODEL THE GENETIC ARCHITECTURE OF ASTHMA
综合基因组学方法来模拟哮喘的遗传结构
- 批准号:
8189641 - 财政年份:2011
- 资助金额:
$ 4.68万 - 项目类别:
Sex-specific genetic architecture of asthma risk in children
儿童哮喘风险的性别特异性遗传结构
- 批准号:
7614681 - 财政年份:2009
- 资助金额:
$ 4.68万 - 项目类别:
Sex-specific genetic architecture of asthma risk in children
儿童哮喘风险的性别特异性遗传结构
- 批准号:
7851418 - 财政年份:2009
- 资助金额:
$ 4.68万 - 项目类别:
Genomic Studies of Sex-Specific Architecture of Asthma-Associated Traits
哮喘相关特征的性别特异性结构的基因组研究
- 批准号:
8788432 - 财政年份:2007
- 资助金额:
$ 4.68万 - 项目类别:
Genomic Studies of Sex-Specific Architecture of Asthma-Associated Traits
哮喘相关特征的性别特异性结构的基因组研究
- 批准号:
8473117 - 财政年份:2007
- 资助金额:
$ 4.68万 - 项目类别:














{{item.name}}会员




