Dissecting Mechanisms of Striatal Acetylcholine Transmission in the Vertebrate Brain

解析脊椎动物大脑中纹状体乙酰胆碱传输的机制

基本信息

  • 批准号:
    10534406
  • 负责人:
  • 金额:
    $ 6.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Acetylcholine critically controls complex neurological functions through its modulation of brain circuits. In contrast to the well-studied mechanisms of acetylcholine signaling at the neuromuscular junction, its transmission modes and mechanisms in the vertebrate central nervous system are not well understood. In the striatum, acetylcholine exerts rapid and powerful control over local dopaminergic activity. Together, these neuromodulators regulate a variety of important behaviors, including motivation and reward-related learning. Because acetylcholine is rapidly degraded after it is released in striatal tissues, the fidelity of acetylcholine to dopamine signaling must involve either tight spatial relationships between release sites and receptors, and/or fast transmission. However, neuromodulator signaling is classically modeled as occurring through volume transmission, involving dispersed, non-specific release as opposed to synaptic, point-to-point signaling – a concept that remains to be proven. Furthermore, the molecular mechanisms underlying striatal acetylcholine signaling remain elusive. I hypothesize that sparse cholinergic terminals require molecular elements for highly synchronous acetylcholine release. In this scenario, rapid and precise vesicle release could produce a synchronous wave of high-concentration acetylcholine, which might allow even distant receptors to sense this signal with potency. To test this hypothesis, I propose to examine the morphological and molecular substrate of striatal acetylcholine transmission in two aims. First, I will dissect the structure of acetylcholine to dopamine signaling in the striatum, including the presence of secretory machinery in acetylcholine nerve terminals and their apposition to acetylcholine receptors on dopamine axons, using superresolution microscopy. In a second aim, I will functionally test whether acetylcholine release onto dopamine axons requires secretory proteins that are predestined to generate fast and precise release, enabling phasic acetylcholine transmission. Additionally, I will determine how this transmission mode impacts subsequent dopamine signaling. To do this, I will use genetic tools paired with simultaneous imaging of fluorescent acetylcholine sensors and amperometric dopamine measurements in striatal slices. Together, these findings will inform our fundamental understanding of cholinergic to dopaminergic signaling in the striatum, including the identification of important genes that regulate acetylcholine transmission. This molecular-level understanding will ultimately be important to better understand brain function and disease.
项目摘要 乙酰胆碱通过其对大脑回路的调节来控制复杂的神经功能。在 与神经肌肉接头处乙酰胆碱信号传导的充分研究机制相反, 脊椎动物中枢神经系统中的传递模式和机制还没有很好地理解。在 在纹状体中,乙酰胆碱对局部多巴胺能活性发挥快速和强有力的控制。所有这些 神经调质调节各种重要行为,包括动机和奖励相关学习。 由于乙酰胆碱在纹状体组织中释放后迅速降解,因此乙酰胆碱对 多巴胺信号传导必须涉及释放位点和受体之间的紧密空间关系,和/或 快速传输。然而,神经调质信号传导被经典地建模为通过体积发生, 传递,涉及分散的,非特异性的释放,而不是突触,点对点的信号传递- a 这个概念还有待证实。此外,纹状体乙酰胆碱的分子机制 信号仍然难以捉摸。我推测,稀疏的胆碱能末梢需要分子元件才能高度表达胆碱能。 同步乙酰胆碱释放。在这种情况下,快速和精确的囊泡释放可以产生一个 高浓度乙酰胆碱的同步波,这可能允许甚至遥远的受体感受到这一点 信号强度。 为了验证这一假设,我建议检查纹状体的形态学和分子基质, 乙酰胆碱传递有两个目的。首先,我将剖析乙酰胆碱的结构, 在纹状体中,包括乙酰胆碱神经末梢中分泌机制的存在及其 并置到多巴胺轴突上的乙酰胆碱受体,使用超分辨率显微镜。第二个目标,我 将在功能上测试乙酰胆碱释放到多巴胺轴突是否需要分泌蛋白, 注定产生快速和精确的释放,使阶段性乙酰胆碱传输。另外,我将 确定这种传输模式如何影响随后的多巴胺信号。为了做到这一点,我将使用遗传 与荧光乙酰胆碱传感器和电流多巴胺同时成像的工具配对 纹状体切片中的测量。总之,这些发现将告知我们对以下问题的基本理解: 纹状体中的胆碱能到多巴胺能信号传导,包括鉴定重要基因, 调节乙酰胆碱传递。这种分子水平的理解最终将对更好地 了解大脑功能和疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathleen Allison Beeson其他文献

Kathleen Allison Beeson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kathleen Allison Beeson', 18)}}的其他基金

Dissecting Mechanisms of Striatal Acetylcholine Transmission in the Vertebrate Brain
解析脊椎动物大脑中纹状体乙酰胆碱传输的机制
  • 批准号:
    10685277
  • 财政年份:
    2022
  • 资助金额:
    $ 6.97万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.97万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 6.97万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 6.97万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.97万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 6.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.97万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 6.97万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 6.97万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 6.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 6.97万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了