Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
基本信息
- 批准号:10535650
- 负责人:
- 金额:$ 77.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAmino Acid SequenceAttentionBackBacteriaBacterial GenomeBacterial ProteinsBehaviorBinding SitesBiochemicalBiochemistryBiologicalBiological MarkersBiological ModelsBiologyCommunitiesComputing MethodologiesDataDatabasesDevelopmentDiseaseDrug DesignEscherichia coliEscherichia coli K12Escherichia coli ProteinsFailureFeedbackFollow-Up StudiesFutureGenesGeneticGenomeHigh-Throughput Nucleotide SequencingHospitalizationHumanHuman ResourcesIn VitroInterventionKnowledgeLaboratoriesLibrariesLigandsMethodsMicrobeModernizationMycoplasmaNetwork-basedOntologyOrganismPathogenesisPerformancePharmacologic SubstancePhysiologicalPhysiologyProtein Structure DatabasesProteinsProteomePublic HealthResearchResolutionRoleSequence HomologySet proteinStructureTechnologyTestingTranslatingUnited StatesUrinary tract infectionUropathogenic E. coliVirulenceVirulence FactorsVirusWorkX-Ray CrystallographyYangbacterial geneticsbasebiological systemsclinically relevantcofactorcomputerized toolsdeep learningexperimental studygenome-widehost colonizationhuman pathogenimprovedin vivoinnovationinsightinterestmethod developmentmicrobial genomemouse modelneural networknext generationnovelpathogenic bacteriapathogenic microbepredictive modelingprotein foldingprotein functionprotein protein interactionprotein structure functionprotein structure predictionpublic databasetherapeutic targettool
项目摘要
Abstract
One of the most pressing challenges in modern biology is that of translating the massive amounts of
information on biological sequences that has been made available by recent advances in sequencing
technologies, into corresponding insights into the behavior of biological systems. Determining the functions and
physiological roles of proteins remains a major component of this challenge; for many species, especially
non-model microbes such as microbial pathogens, the fraction of the proteome consisting of poorly annotated
proteins may approach 50%, severely limiting our ability to even identify mechanisms of pathogenesis and
potential therapeutic targets. The massive number of poorly annotated proteins of potential biological
importance necessitates the ongoing development of efficient and reliable computational approaches for
functional annotation of proteins. Over the past few years, we have developed and applied several new
workflows for whole-proteome structure prediction and functional annotation of bacterial genomes, with
applications to laboratory strain E. coli K12 and to the minimal genome mycoplasma JCVI-syn3.0. Our
workflows are distinguished by the integration of structural information (including high-accuracy protein
structure prediction) in functional annotations, alongside classical methods such as sequence homology and
syntenty, and recent developments such as the inclusion of deep-learning based predictors; we find that
collectively, our workflows provide highly accurate functional annotations that are especially useful for ‘difficult’
protein targets without clear annotated homologs. We will now shift our focus to applying our tools to the
proteomes of bacterial pathogens, with an initial emphasis on uropathogenic E. coli. Specifically, we will
continue to develop our structure/function prediction capabilities to further improve accuracy and increase the
richness of information delivered (Aim 1), perform prediction-guided biochemical characterization of likely
virulence genes to assess predictive performance and identify potential pharmaceutical targets (Aim 2), obtain
experimental structures for proteins that are identified as difficult structural targets which likely represent novel
folds or unusual sequences for known folds (Aim 3), and test the physiological importance of likely
newly-identified virulence factors in an in vivo mouse model (Aim 4). The experimental data gathered under
Aims 2-4 will be continuously integrated with the ongoing methods development under Aim 1 to maximize the
performance and utility of the developed tools. The results of this project will include further improvements to
widely used and cited tools for rapid structure/function prediction, identification of specific virulence
determinants in uropathogenic E. coli and preliminary insights into how they may be targeted for
pharmaceutical intervention, and additional structural data of potential virulence factors that will aid in
structure-based drug design and improve coverage of existing structural template libraries to guide future
protein structure and function prediction.
摘要
现代生物学中最紧迫的挑战之一是翻译大量的
通过测序的最新进展已经获得的关于生物序列的信息
技术,转化为对生物系统行为的相应见解。确定功能和
蛋白质的生理作用仍然是这一挑战的主要组成部分;对于许多物种,特别是
非模式微生物,如微生物病原体,蛋白质组的一部分,包括注释不佳的
蛋白质可能接近50%,严重限制了我们的能力,甚至确定发病机制,
潜在的治疗目标。大量注释不佳的潜在生物学功能蛋白质,
重要性需要不断发展有效和可靠的计算方法,
蛋白质的功能注释。在过去的几年里,我们已经开发和应用了几种新的
全蛋白质组结构预测和细菌基因组功能注释的工作流程,
应用于实验室菌株E. coli K12和支原体JCVI-syn 3.0的最小基因组。我们
工作流程的特点是整合了结构信息(包括高精度蛋白质
结构预测),以及经典的方法,如序列同源性和
语法,以及最近的发展,例如包含基于深度学习的预测器;我们发现,
总的来说,我们的工作流程提供了高度准确的功能注释,特别适用于“困难”
没有明确注释的同源物的蛋白质靶点。现在,我们将把重点转移到将我们的工具应用于
蛋白质组的细菌病原体,最初的重点是尿路致病性大肠杆菌。杆菌具体来说,我们将
继续发展我们的结构/功能预测能力,以进一步提高准确性,
提供丰富的信息(目标1),进行预测指导的生化表征可能
毒力基因,以评估预测性能和确定潜在的药物靶点(目的2),获得
蛋白质的实验结构被确定为困难的结构目标,这可能代表新的
折叠或不寻常的序列为已知的折叠(目的3),并测试可能的生理重要性
在体内小鼠模型中新鉴定的毒力因子(Aim 4)。收集的实验数据
目标2-4将继续与目标1下正在进行的方法开发相结合,
开发工具的性能和实用性。这一项目的成果将包括进一步改进
被广泛使用和引用的工具,用于快速结构/功能预测,鉴定特异性毒力
致病性E.大肠杆菌和初步的见解,他们如何可能针对
药物干预,以及潜在毒力因子的额外结构数据,这将有助于
基于结构药物设计和提高现有结构模板库的覆盖率,以指导未来
蛋白质结构与功能预测
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lydia Freddolino其他文献
Lydia Freddolino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lydia Freddolino', 18)}}的其他基金
Bacteriophage Mu as Tool to Study Genome Organization in Bacteria and Eukaryotes
噬菌体 Mu 作为研究细菌和真核生物基因组组织的工具
- 批准号:
10265837 - 财政年份:2021
- 资助金额:
$ 77.7万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10216988 - 财政年份:2018
- 资助金额:
$ 77.7万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10622670 - 财政年份:2018
- 资助金额:
$ 77.7万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
9892610 - 财政年份:2018
- 资助金额:
$ 77.7万 - 项目类别:
Structure-based functional annotation of microbial genomes
微生物基因组基于结构的功能注释
- 批准号:
10674978 - 财政年份:2018
- 资助金额:
$ 77.7万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
9980452 - 财政年份:2018
- 资助金额:
$ 77.7万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10440347 - 财政年份:2018
- 资助金额:
$ 77.7万 - 项目类别:
Building a unified framework for understanding bacterial gene regulation and chromosomal architecture
建立理解细菌基因调控和染色体结构的统一框架
- 批准号:
10225420 - 财政年份:2018
- 资助金额:
$ 77.7万 - 项目类别:
Genome-wide measurement of bacterial transcriptional regulatory states
细菌转录调控状态的全基因组测量
- 批准号:
8993954 - 财政年份:2013
- 资助金额:
$ 77.7万 - 项目类别:
Genome-wide measurement of bacterial transcriptional regulatory states
细菌转录调控状态的全基因组测量
- 批准号:
8735166 - 财政年份:2013
- 资助金额:
$ 77.7万 - 项目类别:
相似海外基金
Cerebral infarction treatment strategy using collagen-like "triple helix peptide" containing functional amino acid sequence
含功能氨基酸序列的类胶原“三螺旋肽”治疗脑梗塞策略
- 批准号:
23K06972 - 财政年份:2023
- 资助金额:
$ 77.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a screening method for functional microproteins independent of amino acid sequence conservation
不依赖氨基酸序列保守性的功能性微生物蛋白筛选方法的建立
- 批准号:
23KJ0939 - 财政年份:2023
- 资助金额:
$ 77.7万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Effects of amino acid sequence and lipids on the structure and self-association of transmembrane helices
氨基酸序列和脂质对跨膜螺旋结构和自缔合的影响
- 批准号:
19K07013 - 财政年份:2019
- 资助金额:
$ 77.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of electron-transfer amino acid sequence probe with an interaction for protein and cell
蛋白质与细胞相互作用的电子转移氨基酸序列探针的构建
- 批准号:
16K05820 - 财政年份:2016
- 资助金额:
$ 77.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of artificial antibody of anti-bitter taste receptor using random amino acid sequence library
利用随机氨基酸序列库开发抗苦味受体人工抗体
- 批准号:
16K08426 - 财政年份:2016
- 资助金额:
$ 77.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The aa15-17 amino acid sequence in the terminal protein domain of HBV polymerase as a viral factor affect-ing in vivo as well as in vitro replication activity of the virus.
HBV聚合酶末端蛋白结构域中的aa15-17氨基酸序列作为影响病毒体内和体外复制活性的病毒因子。
- 批准号:
25461010 - 财政年份:2013
- 资助金额:
$ 77.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Amino acid sequence analysis of fossil proteins using mass spectrometry
使用质谱法分析化石蛋白质的氨基酸序列
- 批准号:
23654177 - 财政年份:2011
- 资助金额:
$ 77.7万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Precise hybrid synthesis of glycoprotein through amino acid sequence-specific introduction of oligosaccharide followed by enzymatic transglycosylation reaction
通过氨基酸序列特异性引入寡糖,然后进行酶促糖基转移反应,精确杂合合成糖蛋白
- 批准号:
22550105 - 财政年份:2010
- 资助金额:
$ 77.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimating selection on amino-acid sequence polymorphisms in Drosophila
果蝇氨基酸序列多态性选择的估计
- 批准号:
NE/D00232X/1 - 财政年份:2006
- 资助金额:
$ 77.7万 - 项目类别:
Research Grant
Construction of a neural network for detecting novel domains from amino acid sequence information only
构建仅从氨基酸序列信息检测新结构域的神经网络
- 批准号:
16500189 - 财政年份:2004
- 资助金额:
$ 77.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




