Utilization of Lutetium Background Radiation for Quantitative Total-Body PET Imaging
利用镥背景辐射进行定量全身 PET 成像
基本信息
- 批准号:10532720
- 负责人:
- 金额:$ 7.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdolescentAdoptedAffectAnatomyAttentionBackground RadiationBedsBody RegionsCardiologyChildChildhoodClinicalCompensationDataDetectionDiagnosisDiscipline of Nuclear MedicineDiseaseDoseElementsEnsureEventGenerationsHealthHumanImageInfantInflammatoryLengthLesionLutetiumMapsMethodologyMethodsMonte Carlo MethodMotionNeurologyNoiseOncologyPatientsPhotonsPopulationPositioning AttributePositron-Emission TomographyProcessPrognosisProtocols documentationRadiation Dose UnitResearchScanningSignal TransductionSourceSpeedSystemTechnologyTimeTranslatingVisionX-Ray Computed Tomographyattenuationclinical applicationdata exchangedeep learningdenoisingdetectorimage reconstructionimage registrationimprovedpreventradiotracerreconstructionresearch studytooltransmission processtreatment planningtrenduptake
项目摘要
Project Summary/Abstract
Positron emission tomography (PET) is widely used as a clinical and research tool for diagnosis, prognosis, and
treatment planning in oncology, while increasingly being adopted in other fields such as cardiology, neurology,
and inflammatory disorders. The latest generation of PET scanners offer significant enhancements in sensitivity
with an increased axial imaging extent. The sensitivity gain in these scanners directly translates into improved
image quality in standard imaging protocols and enables use of new scan protocols with ultrashort time frames
or ultralow-dose scans. The long axial-field-of-view (AFOV) in these systems offers unique opportunities and
challenges in addressing quantification barriers in PET. Among a wide range of factors affecting the quantitative
accuracy of PET, the effects from attenuation, scatter, and human motion are common and predominant. In this
project, we aim to utilize the lutetium (Lu) background radiation present in these scanners: first, for attenuation
correction (AC) and scatter correction (SC), and second, for motion correction (MC), with particular attention on
ultralow-dose PET scans. AC and SC are usually performed using the attenuation maps (μ-maps) obtained from
a computed tomography (CT) scan performed prior to PET. As ultralow-dose PET scans are now made possible
with long-AFOV PET scanners, it is desirable to further reduce the radiation dose by estimating the μ-maps from
the Lu background radiation, when an additional CT scan can be avoided. We will primarily study our
methodology with the uEXPLORER scanner, which is the world’s first total-body PET scanner that can
simultaneously image the entire body, and will employ the Lu background data together with the PET emission
data in maximum likelihood reconstruction of attenuation and activity (MLAA). We expect to achieve improved
quantitative accuracy compared to prior studies as the high sensitivity and increased flux of background radiation
originating from the large volume of Lu-based detectors in long-AFOV PET scanners, in addition to the ability of
scanning the entire body in a single bed position, enables more efficient utilization of the Lu background. Finally,
as human motion causes quantification bias by introducing image blurring and attenuation-emission mismatches,
we will use a data-driven total-body MC framework to correct both the Lu-background-based μ-maps and the
PET images. We will study the effects of different types of motion on PET quantification in two cases: first, when
PET emission data is used for motion-estimation and second, feasibility of utilizing the Lu background data in
motion-estimation, particularly in ultralow-dose scans or body regions with low radiotracer uptake, in which
standard emission-based data-driven motion estimation methods are prone to error. This is especially important
in total-body PET, as motion in one region of body could affect the AC and SC in other regions. We believe this
contribution will improve the quantification and diagnosis capability in the new generation of PET scanners and
will enable wider clinical and research applications of ultralow-dose PET, particularly in sensitive populations
such as infants, children, and adolescents, leading to better understanding of human health.
项目总结/摘要
正电子发射断层扫描(PET)被广泛用作诊断、预后和诊断的临床和研究工具。
肿瘤学中的治疗计划,同时越来越多地被采用在其他领域,如心脏病学,神经病学,
和炎症性疾病。最新一代的PET扫描仪提供了显着增强的灵敏度
具有增加的轴向成像范围。这些扫描仪中的灵敏度增益直接转化为改进的
标准成像协议中的成像质量,并允许使用具有超短时间帧的新扫描协议
或超低剂量扫描。这些系统中的长轴向视场(AFOV)提供了独特的机会,
解决PET中量化障碍的挑战。在影响定量的各种因素中,
由于PET的准确性,来自衰减、散射和人体运动的影响是常见和主要的。在这
项目中,我们的目标是利用这些扫描仪中存在的镥(Lu)背景辐射:首先,用于衰减
校正(AC)和散射校正(SC),第二,用于运动校正(MC),特别注意
超低剂量PET扫描AC和SC通常使用从以下获得的衰减图(μ图)进行:
在PET之前进行的计算机断层扫描(CT)。随着超低剂量PET扫描成为可能
对于长AFOV PET扫描仪,希望通过估计μ图来进一步降低辐射剂量,
当可以避免额外的CT扫描时,Lu背景辐射。我们将主要研究
uEXPLORER扫描仪是世界上第一台全身PET扫描仪,
同时对整个身体进行成像,并将Lu背景数据与PET发射一起使用
衰减和活动的最大似然重建(MLAA)中的数据。我们希望能够改善
与之前的研究相比,定量准确性高,因为灵敏度高,背景辐射通量增加
源自长AFOV PET扫描仪中的大量基于Lu的探测器,除了
在单个床位置扫描整个身体,使得能够更有效地利用Lu背景。最后,
由于人体运动通过引入图像模糊和衰减-发射失配而导致量化偏差,
我们将使用数据驱动的全身MC框架来校正基于Lu背景的μ图和
PET图像。我们将在两种情况下研究不同类型的运动对PET量化的影响:首先,当
PET发射数据被用于运动估计,第二,利用Lu背景数据的可行性,
运动估计,特别是在超低剂量扫描或具有低放射性示踪剂摄取的身体区域中,其中
标准的基于发射的数据驱动的运动估计方法易于出错。这一点尤其重要
在全身PET中,因为身体一个区域中的运动可能影响其他区域中的AC和SC。我们相信这
这一贡献将提高新一代PET扫描仪的量化和诊断能力,
将使超低剂量PET的临床和研究应用更加广泛,特别是在敏感人群中
例如婴儿、儿童和青少年,从而更好地了解人类健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Negar Omidvari其他文献
Negar Omidvari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Negar Omidvari', 18)}}的其他基金
Utilization of Lutetium Background Radiation for Quantitative Total-Body PET Imaging
利用镥背景辐射进行定量全身 PET 成像
- 批准号:
10352106 - 财政年份:2021
- 资助金额:
$ 7.99万 - 项目类别:
相似海外基金
Exploring the mental health and wellbeing of adolescent parent families affected by HIV in South Africa
探讨南非受艾滋病毒影响的青少年父母家庭的心理健康和福祉
- 批准号:
ES/Y00860X/1 - 财政年份:2024
- 资助金额:
$ 7.99万 - 项目类别:
Fellowship
Scaling-up co-designed adolescent mental health interventions
扩大共同设计的青少年心理健康干预措施
- 批准号:
MR/Y020286/1 - 财政年份:2024
- 资助金额:
$ 7.99万 - 项目类别:
Fellowship
Shared Spaces: The How, When, and Why of Adolescent Intergroup Interactions
共享空间:青少年群体间互动的方式、时间和原因
- 批准号:
ES/T014709/2 - 财政年份:2024
- 资助金额:
$ 7.99万 - 项目类别:
Research Grant
Social Media Mechanisms Affecting Adolescent Mental Health (SoMe3)
影响青少年心理健康的社交媒体机制 (SoMe3)
- 批准号:
MR/X034925/1 - 财政年份:2024
- 资助金额:
$ 7.99万 - 项目类别:
Fellowship
Parent-adolescent informant discrepancies: Predicting suicide risk and treatment outcomes
父母与青少年信息差异:预测自杀风险和治疗结果
- 批准号:
10751263 - 财政年份:2024
- 资助金额:
$ 7.99万 - 项目类别:
Adolescent sugar overconsumption programs food choices via altered dopamine signalling
青少年糖过度消费通过改变多巴胺信号来影响食物选择
- 批准号:
BB/Y006496/1 - 财政年份:2024
- 资助金额:
$ 7.99万 - 项目类别:
Research Grant
The Impact of Online Social Interactions on Adolescent Cognition
在线社交互动对青少年认知的影响
- 批准号:
DE240101039 - 财政年份:2024
- 资助金额:
$ 7.99万 - 项目类别:
Discovery Early Career Researcher Award
Resilience Factors, Pain, and Physical Activity in Adolescent Chronic Musculoskeletal Pain
青少年慢性肌肉骨骼疼痛的弹性因素、疼痛和体力活动
- 批准号:
10984668 - 财政年份:2024
- 资助金额:
$ 7.99万 - 项目类别:
Augmented Social Play (ASP): smartphone-enabled group psychotherapeutic interventions that boost adolescent mental health by supporting real-world connection and sense of belonging
增强社交游戏 (ASP):智能手机支持的团体心理治疗干预措施,通过支持现实世界的联系和归属感来促进青少年心理健康
- 批准号:
10077933 - 财政年份:2023
- 资助金额:
$ 7.99万 - 项目类别:
EU-Funded
Family-Focused Adolescent & Lifelong Health Promotion (FLOURISH)
以家庭为中心的青少年
- 批准号:
10050850 - 财政年份:2023
- 资助金额:
$ 7.99万 - 项目类别:
EU-Funded