Deep learning for prediction of Mild Cognitive Impairment and Dementia of the Alzheimer's type
深度学习预测轻度认知障碍和阿尔茨海默氏症型痴呆
基本信息
- 批准号:10662094
- 负责人:
- 金额:$ 22.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAfrican American populationAgingAlzheimer&aposs DiseaseBackBehaviorBehavioralBiological MarkersBrainClassificationCognitiveComplementDataData ReportingData SetDementiaDiseaseElderlyEtiologyEvaluationFunctional Magnetic Resonance ImagingFundingGoalsHumanImageImpaired cognitionKnowledgeLearningLocationLongitudinal cohortMeasuresMichiganModelingNeurologicNeuropsychologyNot Hispanic or LatinoPathologyPatternPhenotypePrevalencePublic HealthResearchRestSampling StudiesSourceStress TestsSystemTechniquesTimeTrainingWorkbasebehavior measurementbehavior predictionbrain volumecaucasian Americanclinical applicationclinical predictorscohortconnectomedeep learningdeep learning modeldesignethnic minority populationhuman dataimprovedindividual responsemild cognitive impairmentneuroimagingopen datareconstructionyoung adult
项目摘要
ABSTRACT
Alzheimer’s disease and associated dementias are major public health challenges with a multifold increase in
prevalence expected in the coming decades. Alzheimer’s disease is increasingly recognized as having network-
level effects and interactions. In this project, we will develop a deep learning model to learn the latent
representation of functional neuroimaging, in order to disentangle the underlying sources and better reconstruct
the data.
Deep learning approaches in fMRI have faced a common challenge on generalizability and explainability. To
address these issues, the system will learn representations that can be decoded and interpreted as spatial
patterns and temporal dynamics of brain networks; and be readily generalizable to different subjects, brain
states, behavioral tasks, and disease conditions without a need to redesign or retrain the system from scratch.
The proposed focus on Alzheimer’s disease is the first step in exploiting this notion for clinical application.
We will leverage both publicly available large data (e.g., Human Connectome Project-Aging, Alzheimer’s Disease
Neuroimaging Initiative) as well as the well-characterized longitudinal cohort of the NIA P30-funded Michigan
Alzheimer’s Disease Research Center (MADRC); this cohort undergoes annual neurological and
neuropsychological evaluations and is particularly unique since it consists of ~45% African Americans. This
research is particularly relevant for ethnic minority populations since African Americans are almost twice as likely
to develop cognitive decline as Non-Hispanic white Americans; yet most of what has been learned about
dementia biomarkers is based on study samples that are primarily Non-Hispanic white Americans.
The overall goal of this project is to develop an enhanced deep learning model for improved data representation,
subtype classification and prediction of clinical behavioral measures and apply it to the domain of mild cognitive
impairment (MCI) and dementia of the Alzheimer’s Type (DAT).
摘要
阿尔茨海默病和相关痴呆症是主要的公共卫生挑战,发病率成倍增加
预计在未来几十年内会流行。阿尔茨海默病越来越被认为是一种网络-
水平效应和相互作用。在这个项目中,我们将开发一个深度学习模型来学习潜在的
功能性神经成像的代表性,以解开潜在的来源,更好地重建
数据。
fMRI中的深度学习方法面临着普遍性和可解释性的共同挑战。到
为了解决这些问题,系统将学习可以被解码和解释为空间的表示,
大脑网络的模式和时间动态;并容易推广到不同的主题,大脑
状态、行为任务和疾病状况,而无需从头开始重新设计或重新训练系统。
对阿尔茨海默病的关注是将这一概念用于临床应用的第一步。
我们将利用公开的大数据(例如,人类连接组计划-老化、阿兹海默症
神经影像学倡议)以及由NIA P30资助的密歇根大学的纵向队列研究。
阿尔茨海默病研究中心(MADRC);该队列每年进行一次神经和
神经心理学评估,特别是独特的,因为它由约45%的非洲裔美国人组成。这
研究对少数民族人口特别重要,因为非洲裔美国人几乎是少数民族人口的两倍。
非西班牙裔白色美国人的认知能力下降;然而,
痴呆生物标志物是基于主要是非西班牙裔白色美国人的研究样本。
该项目的总体目标是开发一个增强的深度学习模型,以改进数据表示,
临床行为指标的亚型分类和预测,并将其应用于轻度认知领域
阿尔茨海默氏症(Alzheimer’s Type,DAT)是指阿尔茨海默氏症(Alzheimer’s Type,MCI)和阿尔茨海默氏症(Alzheimer’s Type,DAT)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhongming Liu其他文献
Zhongming Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhongming Liu', 18)}}的其他基金
Multimodal Hyperspectral Imaging of Brain Activity and Connectivity
大脑活动和连接性的多模态高光谱成像
- 批准号:
8757764 - 财政年份:2014
- 资助金额:
$ 22.45万 - 项目类别:
Multimodal Hyperspectral Imaging of Brain Activity and Connectivity
大脑活动和连接性的多模态高光谱成像
- 批准号:
9250811 - 财政年份:2014
- 资助金额:
$ 22.45万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 22.45万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 22.45万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 22.45万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 22.45万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 22.45万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 22.45万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 22.45万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 22.45万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 22.45万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 22.45万 - 项目类别:
Research Grant