Using Causal Machine Learning Methods to Inform Tobacco Regulatory Science
使用因果机器学习方法为烟草监管科学提供信息
基本信息
- 批准号:10662955
- 负责人:
- 金额:$ 18.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAgeAmericanAreaAwardBayesian NetworkBehaviorBehavioral ResearchCharacteristicsCigaretteCigarette SmokerComplexDataData AnalysesElectronic cigaretteEntropyEthnic OriginGenderGoalsHealthHeterogeneityInstitutionKnowledgeLearning SkillLiteratureLongitudinal StudiesMachine LearningMeasuresMentorsMethodsModelingObservational StudyPerformancePilot ProjectsPolicy MakingPopulationPopulation AnalysisPopulation Assessment of Tobacco and HealthPovertyProcessRaceRegression AnalysisRegulationResearchResearch DesignResearch PersonnelResearch PriorityRiskScienceScoring MethodSelection BiasSmokeSmokerSubgroupSurgeonTimeTobaccoTobacco useTrainingVulnerable PopulationsYouthcigarette smokingcombustible cigarettecomplex dataelectronic cigarette useevidence baseexperienceforesthealth disparityhigh dimensionalityintersectionalitylongitudinal analysismachine learning methodmultidimensional dataregression treesresearch studyresponsesecondary analysistheoriestobacco preventiontobacco productstobacco regulationtobacco regulatory science
项目摘要
PROJCT SUMMARY/ABSTRACT
Inconsistent findings regarding whether and how E-cigarette (EC) use influences subsequent tobacco use
behaviors complicate evidence-based tobacco regulation. Among youth, EC use is associated with greater risk
of transitioning to combustible cigarette (CC) smoking, but estimated effect sizes of EC exposure vary
substantially across studies. Among adults who currently smoke CCs, ECs show potential to help quit CC
smoking in some studies but not in others. These inconsistent findings may be due in part to a preponderance
of observational studies, use of small size cross-sectional data, and inadequate control for covariates, Further,
despite considerable heterogeneity in the size of estimated EC exposure effects, whether specific
characteristics modify the EC exposure effects has been largely ignored in literature. Understanding how ECs
influence subsequent CC smoking, particularly among vulnerable subgroups (e.g., age, gender), and their
intersectionality, will help inform regulatory activities that address tobacco-related health disparities. Lastly, it is
unclear whether estimated EC exposure effects from a certain population subgroup or at a certain time can be
generalized to different subgroups or times. Generalizable EC exposure effects could provide critical evidence
for tobacco regulators. To address these knowledge gaps, this study aims to use causal machine learning
methods to determine the influence of ECs on subsequent CC smoking, in overall US youth and adult
populations and in vulnerable subgroups, and to explore methods for estimating generalizable EC exposure
effects. A secondary analysis of the longitudinal Population Assessment of Tobacco and Health study will be
conducted to address the following specific aims. Aim 1: Determine average exposure effects of EC use on
subsequent CC smoking in youth and adults. Aim 2: Determine heterogeneous EC exposure effects among
vulnerable subgroups (age, gender, poverty, race/ethnicity). Aim 3: Evaluate the performance of causal
machine learning methods to generalize EC exposure effects using both simulated and PATH Study data. To
successfully accomplish these aims and develop into an independent methodologist in tobacco regulator
science (TRS), I will obtain training in the following areas: 1) TRS theories and measures, especially health
disparities in TRS; 2) Causal inference methods for evaluating exposure effects; and 3) Machine learning skills
for high-dimensional data analysis. During the award period, I will be supported in my research and training
goals by my institution and interdisciplinary mentoring team, which consists of experts in the fields of TRS,
causal inference, machine learning, and health disparities. The K01 research and training experience will result
in an R01 with the overarching goal of extending causal machine learning methods for generalization to
address more complex real-world questions. In the long term, I will bring TRS, machine learning methods,
and causal inference together to address pressing issues in TRS. This effort will put causal machine learning
methods in the hands of tobacco researchers and facilitate the use of complex data to inform FDA regulations.
项目概要/摘要
关于电子烟(EC)使用是否以及如何影响随后的烟草使用的不一致结果
行为使循证烟草监管复杂化。在年轻人中,使用EC与更大的风险有关
过渡到可燃香烟(CC)吸烟,但估计的影响大小EC暴露不同
基本上是跨研究的。在目前吸烟CC的成年人中,EC显示出帮助戒烟CC的潜力
在一些研究中吸烟,但在其他研究中没有。这些不一致的发现可能部分是由于
观察性研究,使用小规模的横断面数据,以及协变量控制不足,此外,
尽管估计的EC暴露效应的大小存在相当大的异质性,
特性修改EC暴露效应在文献中很大程度上被忽略。了解EC如何
影响随后的CC吸烟,特别是在脆弱的亚组(例如,年龄、性别),以及
这种交叉性将有助于为解决与烟草有关的健康差距的监管活动提供信息。最后是
尚不清楚是否可以估计某一人群亚组或某一时间的EC暴露效应,
一般化到不同的子组或时间。可推广的EC暴露效应可以提供关键证据
烟草监管机构。为了解决这些知识差距,本研究旨在使用因果机器学习
确定EC对美国青少年和成年人随后CC吸烟的影响的方法
人群和脆弱亚群,并探讨估计可推广的EC暴露的方法
方面的影响.将对烟草与健康纵向人群评估研究进行二次分析,
旨在实现以下具体目标。目标1:确定使用氨基甲酸乙酯对
青少年和成年人随后的CC吸烟。目标2:确定不同环境中的EC暴露效应
弱势亚群(年龄、性别、贫困、种族/民族)。目标3:评估因果关系的绩效
机器学习方法,使用模拟和PATH研究数据来概括EC暴露效应。到
成功地实现了这些目标,并发展成为烟草监管独立方法学家
科学(TRS),我将获得以下方面的培训:1)TRS理论和措施,特别是健康
TRS的差异; 2)评估暴露影响的因果推理方法; 3)机器学习技能
用于高维数据分析。在获奖期间,我将在研究和培训方面获得支持
目标由我的机构和跨学科的指导团队,其中包括在TRS领域的专家,
因果推理、机器学习和健康差异。K 01研究和培训经验将导致
在R 01中,首要目标是将因果机器学习方法扩展到
解决更复杂的现实问题。从长远来看,我会带来TRS,机器学习方法,
和因果推理一起解决TRS中的紧迫问题。这一努力将把因果机器学习
烟草研究人员手中的方法,并促进使用复杂的数据,以告知FDA的规定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shu Xu其他文献
Shu Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Developing a Young Adult-Mediated Intervention to Increase Colorectal Cancer Screening among Rural Screening Age-Eligible Adults
制定年轻人介导的干预措施,以增加农村符合筛查年龄的成年人的结直肠癌筛查
- 批准号:
10653464 - 财政年份:2023
- 资助金额:
$ 18.27万 - 项目类别:
Doctoral Dissertation Research: Estimating adult age-at-death from the pelvis
博士论文研究:从骨盆估算成人死亡年龄
- 批准号:
2316108 - 财政年份:2023
- 资助金额:
$ 18.27万 - 项目类别:
Standard Grant
Determining age dependent factors driving COVID-19 disease severity using experimental human paediatric and adult models of SARS-CoV-2 infection
使用 SARS-CoV-2 感染的实验性人类儿童和成人模型确定导致 COVID-19 疾病严重程度的年龄依赖因素
- 批准号:
BB/V006738/1 - 财政年份:2020
- 资助金额:
$ 18.27万 - 项目类别:
Research Grant
Transplantation of Adult, Tissue-Specific RPE Stem Cells for Non-exudative Age-related macular degeneration (AMD)
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 (AMD)
- 批准号:
10294664 - 财政年份:2020
- 资助金额:
$ 18.27万 - 项目类别:
Sex differences in the effect of age on episodic memory-related brain function across the adult lifespan
年龄对成人一生中情景记忆相关脑功能影响的性别差异
- 批准号:
422882 - 财政年份:2019
- 资助金额:
$ 18.27万 - 项目类别:
Operating Grants
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
- 批准号:
430871 - 财政年份:2019
- 资助金额:
$ 18.27万 - 项目类别:
Studentship Programs
Transplantation of Adult, Tissue-Specific RPE Stem Cells as Therapy for Non-exudative Age-Related Macular Degeneration AMD
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 AMD
- 批准号:
9811094 - 财政年份:2019
- 资助金额:
$ 18.27万 - 项目类别:
Study of pathogenic mechanism of age-dependent chromosome translocation in adult acute lymphoblastic leukemia
成人急性淋巴细胞白血病年龄依赖性染色体易位发病机制研究
- 批准号:
18K16103 - 财政年份:2018
- 资助金额:
$ 18.27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Doctoral Dissertation Research: Literacy Effects on Language Acquisition and Sentence Processing in Adult L1 and School-Age Heritage Speakers of Spanish
博士论文研究:识字对西班牙语成人母语和学龄传统使用者语言习得和句子处理的影响
- 批准号:
1823881 - 财政年份:2018
- 资助金额:
$ 18.27万 - 项目类别:
Standard Grant
Adult Age-differences in Auditory Selective Attention: The Interplay of Norepinephrine and Rhythmic Neural Activity
成人听觉选择性注意的年龄差异:去甲肾上腺素与节律神经活动的相互作用
- 批准号:
369385245 - 财政年份:2017
- 资助金额:
$ 18.27万 - 项目类别:
Research Grants