Lung cancer screening efficacy enhanced through radiomic and epigenetic biomarkers
通过放射组学和表观遗传生物标志物增强肺癌筛查功效
基本信息
- 批准号:10663383
- 负责人:
- 金额:$ 34.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-11 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAdultAffectAmericanAmerican College of Radiology Imaging NetworkAmerican Lung AssociationBenignBiological AssayBiological MarkersCYP1A1 geneCause of DeathCenters for Disease Control and Prevention (U.S.)Cessation of lifeChestChronic BronchitisChronic Obstructive Pulmonary DiseaseCitiesClinicClinicalClinical DataComputational algorithmComputersDNADNA MethylationDataDiagnostic ImagingDiagnostic testsDisease ProgressionEarly DiagnosisEarly treatmentEligibility DeterminationEpigenetic ProcessExposure toGrantHeterogeneityHigh Resolution Computed TomographyImageLesionLobarLungLung diseasesLung noduleMachine LearningMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of lungMeasurementMeasuresMethodsMethylationModelingNoduleObstructive Lung DiseasesOutcomePatient Self-ReportPerformancePersonsPopulationPredictive ValuePredispositionPulmonary EmphysemaRadiation exposureRadiology SpecialtyReportingResearchResearch SubjectsRiskRisk FactorsSamplingScreening for cancerShapesSmokingSmoking Cessation InterventionSmoking HistoryStructureStructure of parenchyma of lungTestingTextureThoracic RadiographyTobaccoTobacco useUnited States Department of Veterans AffairsUniversitiesValidationX-Ray Computed Tomographyairway obstructionautomated segmentationcancer epidemiologycancer riskcigarette smokecigarette smokingclinical diagnosiscohortcomputed tomography screeningdigitalepigenetic markerformer smokerimage processingimprovedinterestlow dose computed tomographylung cancer screeningmachine learning classificationmeetingsmethylation testingmortalitypredictive modelingpreventprospectiveradiomicsrepositoryrisk predictionrisk prediction modelscreeningshared decision makingsmoking exposuretobacco controltobacco exposuretrial enrollmenttv watching
项目摘要
ABSTRACT
Smoking is the largest risk factor for both lung cancer and obstructive lung disease. The National Lung
Screening Trial (NLST) enrolled subjects who reported a cigarette smoking history of at least 30 pack years and
showed that annual low-dose computed tomography (LDCT) screening could reduce mortality from lung cancer
by approximately 16%, compared to conventional chest x-ray. However, it remains clinically challenging to
efficiently distinguish the small number of malignant nodules from the many benign lung nodules detected with
screening. In addition, the chest LDCT data captured during screening also has untapped utility in quantitatively
evaluating obstructive lung disease.
LDCT captures a wealth of information that can be automatically and objectively quantified and extracted
from the image data using computer algorithms. We have methods for automated segmentation of structures of
interest from the image data and will extract hundreds of radiological biomarkers focused on pulmonary nodules,
peri-nodular lung parenchyma, the whole lung, and capture lobar heterogeneity. This study will also incorporate
an objective epigenetic biomarker of smoking history via measurement of DNA methylation at cg05575921. Our
epigenetic biomarker has been shown to strongly predict smoking intensity by several studies. We will use the
objective radiological and epigenetic biomarkers and machine learning approaches to predict both (1) the risk of
lung cancer and (2) rapid obstructive lung disease progression in the NLST screening population. We
hypothesize that incorporating DNA methylation at cg05575921 will be a valuable addition to both prediction
models. Determining the outcome of the hypothesis will guide if this epigenetic biomarker should be incorporated
in prospective lung cancer screening studies.
This project will have impact as it will result in an improved automatic risk prediction algorithm to guide
management in subjects with a lung nodule detected by LDCT screening. This approach can facilitate rapid
treatment for those with cancer and prevent complications from invasive diagnostic testing as well as
unnecessary radiation exposure from diagnostic imaging in those with benign lesions. Predicting rapid
obstructive lung disease progression may be beneficial for clinician/subject shared decision-making discussions
and targeted smoking cessation interventions in addition to improving lung cancer prediction.
抽象的
吸烟是肺癌和阻塞性肺病的最大危险因素。国家肺
筛选试验 (NLST) 纳入了报告有至少 30 包年吸烟史的受试者,并且
研究表明,每年进行低剂量计算机断层扫描 (LDCT) 筛查可以降低肺癌死亡率
与传统胸部 X 光检查相比,减少约 16%。然而,临床上仍然具有挑战性
有效地区分少数恶性结节与检测到的许多良性肺结节
筛选。此外,筛查期间捕获的胸部 LDCT 数据在定量方面也具有尚未开发的效用。
评估阻塞性肺疾病。
LDCT 捕获了大量可以自动、客观地量化和提取的信息
使用计算机算法从图像数据中获得。我们有自动分割结构的方法
从图像数据中提取兴趣,并将提取数百个专注于肺结节的放射生物标志物,
结节周围肺实质、整个肺,并捕获肺叶异质性。这项研究还将纳入
通过测量 cg05575921 的 DNA 甲基化来作为吸烟史的客观表观遗传生物标志物。我们的
多项研究表明表观遗传生物标志物可以强有力地预测吸烟强度。我们将使用
客观的放射学和表观遗传生物标志物以及机器学习方法来预测 (1) 的风险
NLST 筛查人群中肺癌和 (2) 阻塞性肺疾病的快速进展。我们
假设在 cg05575921 处合并 DNA 甲基化将对这两种预测都有价值
模型。确定假设的结果将指导是否应纳入该表观遗传生物标志物
前瞻性肺癌筛查研究。
该项目将会产生影响,因为它将产生改进的自动风险预测算法来指导
对通过 LDCT 筛查检测到肺结节的受试者进行管理。这种方法可以促进快速
治疗癌症患者并预防侵入性诊断测试引起的并发症以及
良性病变患者因诊断成像而遭受不必要的辐射。快速预测
阻塞性肺病进展可能有利于临床医生/受试者共同决策讨论
除了改善肺癌预测之外,还有针对性的戒烟干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica C Sieren其他文献
Accelerating dynamic imaging of the lung using blind compressed sensing
- DOI:
10.1186/1532-429x-16-s1-w27 - 发表时间:
2014-01-16 - 期刊:
- 影响因子:
- 作者:
Sajan Goud Lingala;Yasir Mohsin;John D Newell;Jessica C Sieren;Daniel Thedens;Peter Kollasch;Mathews Jacob - 通讯作者:
Mathews Jacob
Jessica C Sieren的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica C Sieren', 18)}}的其他基金
Lung cancer screening efficacy enhanced through radiomic and epigenetic biomarkers
通过放射组学和表观遗传生物标志物增强肺癌筛查功效
- 批准号:
10518050 - 财政年份:2022
- 资助金额:
$ 34.64万 - 项目类别:
Nodestruction Multi-Scale Micro-CT Imaging System
Nodestruction多尺度显微CT成像系统
- 批准号:
8734578 - 财政年份:2015
- 资助金额:
$ 34.64万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 34.64万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 34.64万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 34.64万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 34.64万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 34.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 34.64万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 34.64万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 34.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 34.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 34.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




