The role of beta cell ATF6 in type 1 diabetes
β细胞ATF6在1型糖尿病中的作用
基本信息
- 批准号:10663345
- 负责人:
- 金额:$ 38.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-24 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:ATF6 geneAcuteAntioxidantsApoptosisApoptoticAutoimmuneB-LymphocytesBeta CellBindingBiochemicalBiological AssayCell CommunicationCell Cycle ArrestCell DeathCell SurvivalCell physiologyCellsCellular StressChemicalsChronicCommunitiesDNA DamageDataDevelopmentDiabetes MellitusDiseaseEndoplasmic ReticulumEnvironmental Risk FactorEtiologyExhibitsExposure toFailureFutureGene ExpressionGene Expression ProfileGenesGenetic ModelsGenetic TranscriptionGoalsGraft SurvivalHomeostasisHumanImmuneImmune systemInbred NOD MiceIncidenceIndividualInflammationInsulinInsulin-Dependent Diabetes MellitusKnowledgeLeukocytesLightM cellMediatingMembraneModelingMolecularMusNon obeseOutcomePathologicPathologyPathway interactionsPatientsPhysiologicalPlayPre-Clinical ModelProteinsReagentRegulationRepressionResourcesRoleSignal PathwaySignal TransductionSortingStressStructure of beta Cell of isletSystemT-Cell ActivationTP53 geneTechniquesTestingTherapeuticTranscriptional RegulationUp-RegulationWorkacute stressbiological adaptation to stresscell typecopingdiabetes pathogenesisendoplasmic reticulum stressfunctional lossgene repressionimprovedin vivoinsightinsulitisisletknowledge baseloss of functionmigrationmouse modelnovelnovel therapeutic interventionpre-clinicalprogramspromoterprotein misfoldingresponsesensortranscriptometranslational approach
项目摘要
PROJECT SUMMARY/ABSTRACT
Type 1 diabetes (T1D) results from autoimmune-mediated destruction of pancreatic β-cells. Despite its
autoimmune etiology, emerging data suggest that intrinsic β-cell stress and defective adaptive stress responses
can play an important role in the loss of functional β-cell mass in T1D. However, the molecular mechanisms by
which the stress responses regulate β-cell death/survival in T1D have remained elusive, due primarily to a lack of in
vivo preclinical genetic models, hindering the development of novel, effective, and alternative therapeutic strategies
against T1D. Endoplasmic reticulum (ER) stress is caused by protein misfolding, chronic inflammation, and
environmental factors. Upon ER stress, the unfolded protein response (UPR), a signaling cascade mediated by ER
membrane-localized sensors ATF6, IRE1α and PERK, is triggered to re-establish cellular homeostasis. While these
proteins induce adaptive responses under acute stress, under prolonged stress the UPR initiates apoptosis. The
decision mechanisms for switching between adaptive and maladaptive responses, and the specific adaptive or
maladaptive functions of each UPR sensors in distinct cell types and disease contexts, are yet to be
uncovered.
To this end,
we have recently deleted Atf6 in β-cells (Atf6β-/-) of a well-established preclinical T1D
model, non-obese diabetes (NOD) mice, before the initiation of islet inflammation. Remarkably, Atf6β-/- mice
exhibited significantly reduced diabetes incidence . Transcriptome analysis of sorted β-cells of NOD Atf6β-/- mice
revealed p53/p21 signaling pathway as the top enriched pathway and uncovered a previously not recognized
pro-survival adaptative program in β-cells during T1D progression, which ultimately confers protection from
T1D. Atf6β-/- mice also showed reduced insulitis and increased expression of immune inhibitory markers in β-
cells, suggesting a non-cell autonomous effect of loss of function of Atf6 on the immune system. Therefore, in
light of these data we hypothesize that upon loss of Atf6 in β-cells, a novel adaptive program governed by p21
signaling prevails, which in a non-cell autonomous manner alters β-cells-immune cell communication. Moreover,
we hypothesize that under acute versus mild and prolonged stress conditions ATF6 triggers distinct transcriptional
programs to regulate cellular homeostasis in human β-cells. Here, by utilizing a mouse model and human islets
combined with a comprehensive toolbox of techniques and novel reagents we propose to (i) identify the
mechanisms, by which loss of Atf6 in b-cells impact, b-cell-immune cell crosstalk (ii) define the mechanisms of p21
upregulation and reduced pathology in Atf6β-/- mice, and (iii) determine the ATF6-mediated stress adaptation
mechanisms in human islets exposed to acute and prolonged ER stress. The successful completion of these
studies will fill an existing gap in our knowledge base regarding the function of Atf6 in β-cells, identify a novel
mechanism for β-cell-immune cell crosstalk, and significantly improve our understanding of mechanisms of β-
cell failure in T1D. It will also provide mechanistic insight for future studies and support alternative translational
strategies for T1D that target the b-cell UPR.
项目概要/摘要
1 型糖尿病 (T1D) 是由自身免疫介导的胰腺 β 细胞破坏引起的。尽管其
自身免疫病因学,新出现的数据表明,内在的β细胞应激和有缺陷的适应性应激反应
在 T1D 中功能性 β 细胞质量的丧失中发挥重要作用。然而,分子机制通过
应激反应在 T1D 中调节 β 细胞死亡/存活的机制仍然难以捉摸,主要是由于缺乏
体内临床前遗传模型,阻碍了新颖、有效和替代治疗策略的开发
对抗 T1D。内质网 (ER) 应激是由蛋白质错误折叠、慢性炎症和
环境因素。内质网应激时,未折叠蛋白反应 (UPR),这是由内质网介导的信号级联反应
膜定位传感器 ATF6、IRE1α 和 PERK 被触发以重建细胞稳态。虽然这些
蛋白质在急性应激下诱导适应性反应,在长期应激下,UPR 启动细胞凋亡。这
在适应性和适应不良反应之间切换的决策机制,以及特定的适应性或适应性反应
每个 UPR 传感器在不同细胞类型和疾病背景下的适应不良功能尚未确定
裸露。
为此,
我们最近删除了临床前 T1D 的 β 细胞 (Atf6β-/-) 中的 Atf6
模型,非肥胖糖尿病(NOD)小鼠,在胰岛炎症开始之前。值得注意的是,Atf6β-/- 小鼠
表现出显着降低的糖尿病发病率。 NOD Atf6β-/- 小鼠分选 β 细胞的转录组分析
揭示了 p53/p21 信号通路是最富集的通路,并发现了以前未被识别的通路
T1D 进展期间 β 细胞中的促生存适应性程序,最终提供保护
T1D。 Atf6β-/- 小鼠还表现出胰岛素炎的减轻和 β- 中免疫抑制标记物表达的增加。
细胞,表明 Atf6 功能丧失对免疫系统产生非细胞自主效应。因此,在
根据这些数据,我们假设 β 细胞中 Atf6 丢失后,会出现一种由 p21 控制的新型适应性程序
信号传导占主导地位,它以非细胞自主的方式改变β细胞-免疫细胞的通讯。而且,
我们假设在急性应激条件下与轻度应激条件下和长期应激条件下 ATF6 会触发不同的转录
调节人类 β 细胞细胞稳态的程序。在这里,通过利用小鼠模型和人类胰岛
结合技术和新颖试剂的综合工具箱,我们建议(i)确定
b 细胞中 Atf6 缺失影响 b 细胞-免疫细胞串扰的机制 (ii) 定义了 p21 的机制
Atf6β-/- 小鼠中的上调和病理减少,以及 (iii) 确定 ATF6 介导的应激适应
暴露于急性和长期内质网应激的人类胰岛的机制。这些工作的顺利完成
研究将填补我们知识库中关于 Atf6 在 β 细胞中的功能的现有空白,确定一种新的
β-细胞-免疫细胞串扰机制,并显着提高我们对β-细胞-免疫细胞串扰机制的理解
T1D 细胞衰竭。它还将为未来的研究提供机制见解并支持替代转化
针对 b 细胞 UPR 的 T1D 策略。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis of Half a Billion Datapoints Across Ten Machine-Learning Algorithms Identifies Key Elements Associated With Insulin Transcription in Human Pancreatic Islet Cells.
- DOI:10.3389/fendo.2022.853863
- 发表时间:2022
- 期刊:
- 影响因子:5.2
- 作者:Wong WKM;Thorat V;Joglekar MV;Dong CX;Lee H;Chew YV;Bhave A;Hawthorne WJ;Engin F;Pant A;Dalgaard LT;Bapat S;Hardikar AA
- 通讯作者:Hardikar AA
An accomplice more than a mere victim: The impact of β-cell ER stress on type 1 diabetes pathogenesis.
- DOI:10.1016/j.molmet.2021.101365
- 发表时间:2021-12
- 期刊:
- 影响因子:8.1
- 作者:Sahin GS;Lee H;Engin F
- 通讯作者:Engin F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feyza Engin其他文献
Feyza Engin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feyza Engin', 18)}}的其他基金
The role of beta cell ATF6 in type 1 diabetes
β细胞ATF6在1型糖尿病中的作用
- 批准号:
10337931 - 财政年份:2021
- 资助金额:
$ 38.21万 - 项目类别:
Beta cell endoplasmic reticulum stress and its crosstalk with immune system in ty
β细胞内质网应激及其与免疫系统的串扰
- 批准号:
8914618 - 财政年份:2014
- 资助金额:
$ 38.21万 - 项目类别:
Beta cell endoplasmic reticulum stress and its crosstalk with immune system in ty
β细胞内质网应激及其与免疫系统的串扰
- 批准号:
8751851 - 财政年份:2014
- 资助金额:
$ 38.21万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 38.21万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 38.21万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 38.21万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 38.21万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 38.21万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 38.21万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 38.21万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 38.21万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 38.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 38.21万 - 项目类别:
Operating Grants














{{item.name}}会员




