The Development and Systematic Evaluation of an AI-Assisted Just-in-Time-Adaptive-Intervention for Improving Child Mental Health
人工智能辅助改善儿童心理健康的即时适应性干预的开发和系统评估
基本信息
- 批准号:10663395
- 负责人:
- 金额:$ 73.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-08 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAgeAggressive behaviorAlgorithmsAnxietyAppointmentAreaArtificial IntelligenceBehaviorBehavioralBusinessesCaregiversCellular PhoneCessation of lifeChildChild Mental HealthChild RearingChildhoodComputer softwareConflict (Psychology)CouplesDataData AnalyticsDevelopmentDistalEarly InterventionEconomic BurdenEcosystemEducational CurriculumEffectivenessEmotionsEngineeringEvaluationEventExposure toFamilyFamily RelationshipFosteringGoalsHealth Services AccessibilityHeart DiseasesHome visitationHourImpairmentIndividualInternetInterventionLearningLifeLinkLongevityMachine LearningMalignant NeoplasmsMeasurementMeasuresMediatingMental DepressionMental HealthMental Health ServicesMethodsModalityModelingMonitorMoodsNational Institute of Mental HealthOutcomeParent-Child RelationsParentsPatternPerformancePersonsPhasePlayPopulationPopulations at RiskProcessPsychologistPsychologyPublic HealthReportingResearchResourcesRiskRoleSafetySamplingSchoolsScientific Advances and AccomplishmentsService delivery modelSocietiesStressSymptomsSystemTechnologyTestingTherapeuticTimeTraining and EducationUnderserved PopulationWorkadaptive interventionanalytical methodbarrier to carecomparison controlcontagioncost effectivedata sharingdesigndigitalearly childhoodefficacy evaluationefficacy testingfamily supportflexibilityfoster childhandheld mobile devicehealth care availabilityimprovedin vivo monitoringinnovationinnovative technologiesinterdisciplinary collaborationinventionmachine learning algorithmmachine learning methodmachine learning prediction algorithmmobile computingmobile sensingnew technologyphysical conditioningpreventpreventive interventionprogramsprotective effectpsychologicrandomized, clinical trialsresearch and developmentresponseservice deliverysocialsubstance usesymptomatic improvementtechnology developmenttechnology platformtherapeutic effectivenesswearable device
项目摘要
PROJECT SUMMARY/ABSTRACT
Early childhood mental health problems constitute a significant public health concern with wide-ranging impacts
on functioning both concurrently and later in life. Although childhood mental health is influenced by a variety of
factors, the quality of relationships with caregivers plays a critical role. Critical, coercive, and conflictual parent-
child interactions have been consistently linked with increased risk of externalizing and internalizing symptoms,
whereas supportive and nurturing relationships have been shown to confer protective effects. Early intervention
of maladaptive family relationships is thus crucial for preventing or offsetting negative developmental trajectories
in at-risk children. A variety of therapeutic methods have been developed and employed to foster positive parent-
child relationships and improve child mental health, including parent training/education, in-person therapy, home
visiting, school curriculums, and web programs. However, systematic obstacles interfere with the accessibility,
generalizability, and acceptability of these traditional appointment- and module-based approaches. Furthermore,
limitations in the family-centered flexibility, individual responsiveness, and broad availability of these services
render them inadequate to address the unique needs of at-risk populations who would benefit from more readily
accessible and inexpensive 24-hour support that is provided in real time and real life—when and where support
is needed most. Not surprisingly, research finds that roughly half of the families who do participate in traditional
appointment- and module-based mental health services fail to show sufficient symptom improvement. Just-in-
time adaptive interventions (JITAIs), in contrast, utilize smartphones, wearables, and artificial intelligence (AI) to
identify and respond to psychological and behavioral processes and contextual events as they unfold in everyday
life. Although JITAIs have the potential to transform the way people receive mental health support, barriers to
their successful, wide-scale implementation remain. Using pilot data collected from smartphones and wearables,
our interdisciplinary team of psychologists and engineers used AI to build machine learning algorithms to detect
psychological states and contextual events, such as ongoing moods and relationship conflict, in couples. In the
current project, we propose developing and testing a JITAI to provide opportune supports to families in dynamic
response to contextual events and shifting psychological states to amplify attachment bonds, regulate emotion,
and intervene in maladaptive parent-child interactional patterns. Building on our prior research, we will (1) build
software to unobtrusively capture real-time data from commercially-available mobile devices, (2) use machine
learning to develop algorithms to automatically monitor psychological and behavioral processes relevant to child
mental health, (3) launch a JITAI to provide as-needed intervention, and (4) carry out a micro-randomized clinical
trial to test the efficacy, acceptability, and safety of our JITAI for decreasing child internalizing and externalizing
symptoms. Our project will contribute to the development of technology ecosystems and service delivery models
with the power to meaningfully transform the accessibility and dynamic responsiveness of mental health care.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATTHEW WILLIAM AHLE其他文献
MATTHEW WILLIAM AHLE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATTHEW WILLIAM AHLE', 18)}}的其他基金
The Development and Systematic Evaluation of an AI-Assisted Just-in-Time-Adaptive-Intervention for Improving Child Mental Health
人工智能辅助改善儿童心理健康的及时适应性干预的开发和系统评估
- 批准号:
10867550 - 财政年份:2020
- 资助金额:
$ 73.8万 - 项目类别:
The Development and Systematic Evaluation of an AI-Assisted Just-in-Time-Adaptive-Intervention for Improving Child Mental Health
人工智能辅助改善儿童心理健康的及时适应性干预的开发和系统评估
- 批准号:
10861394 - 财政年份:2020
- 资助金额:
$ 73.8万 - 项目类别:
The Development and Systematic Evaluation of an AI-Assisted Just-in-Time-Adaptive-Intervention for Improving Child Mental Health
人工智能辅助改善儿童心理健康的及时适应性干预的开发和系统评估
- 批准号:
10664060 - 财政年份:2020
- 资助金额:
$ 73.8万 - 项目类别:
相似海外基金
Developing a Young Adult-Mediated Intervention to Increase Colorectal Cancer Screening among Rural Screening Age-Eligible Adults
制定年轻人介导的干预措施,以增加农村符合筛查年龄的成年人的结直肠癌筛查
- 批准号:
10653464 - 财政年份:2023
- 资助金额:
$ 73.8万 - 项目类别:
Doctoral Dissertation Research: Estimating adult age-at-death from the pelvis
博士论文研究:从骨盆估算成人死亡年龄
- 批准号:
2316108 - 财政年份:2023
- 资助金额:
$ 73.8万 - 项目类别:
Standard Grant
Determining age dependent factors driving COVID-19 disease severity using experimental human paediatric and adult models of SARS-CoV-2 infection
使用 SARS-CoV-2 感染的实验性人类儿童和成人模型确定导致 COVID-19 疾病严重程度的年龄依赖因素
- 批准号:
BB/V006738/1 - 财政年份:2020
- 资助金额:
$ 73.8万 - 项目类别:
Research Grant
Transplantation of Adult, Tissue-Specific RPE Stem Cells for Non-exudative Age-related macular degeneration (AMD)
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 (AMD)
- 批准号:
10294664 - 财政年份:2020
- 资助金额:
$ 73.8万 - 项目类别:
Sex differences in the effect of age on episodic memory-related brain function across the adult lifespan
年龄对成人一生中情景记忆相关脑功能影响的性别差异
- 批准号:
422882 - 财政年份:2019
- 资助金额:
$ 73.8万 - 项目类别:
Operating Grants
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
- 批准号:
430871 - 财政年份:2019
- 资助金额:
$ 73.8万 - 项目类别:
Studentship Programs
Transplantation of Adult, Tissue-Specific RPE Stem Cells as Therapy for Non-exudative Age-Related Macular Degeneration AMD
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 AMD
- 批准号:
9811094 - 财政年份:2019
- 资助金额:
$ 73.8万 - 项目类别:
Study of pathogenic mechanism of age-dependent chromosome translocation in adult acute lymphoblastic leukemia
成人急性淋巴细胞白血病年龄依赖性染色体易位发病机制研究
- 批准号:
18K16103 - 财政年份:2018
- 资助金额:
$ 73.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Doctoral Dissertation Research: Literacy Effects on Language Acquisition and Sentence Processing in Adult L1 and School-Age Heritage Speakers of Spanish
博士论文研究:识字对西班牙语成人母语和学龄传统使用者语言习得和句子处理的影响
- 批准号:
1823881 - 财政年份:2018
- 资助金额:
$ 73.8万 - 项目类别:
Standard Grant
Adult Age-differences in Auditory Selective Attention: The Interplay of Norepinephrine and Rhythmic Neural Activity
成人听觉选择性注意的年龄差异:去甲肾上腺素与节律神经活动的相互作用
- 批准号:
369385245 - 财政年份:2017
- 资助金额:
$ 73.8万 - 项目类别:
Research Grants