Mathematical modeling of optimal therapeutic combinations for HIV cure
HIV治愈最佳治疗组合的数学模型
基本信息
- 批准号:10540716
- 负责人:
- 金额:$ 46.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-16 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementAcquired Immunodeficiency SyndromeAcuteAdultAftercareAgreementCAR T cell therapyCD4 Positive T LymphocytesCaringCell TherapyCellsCharacteristicsChronicClinicClinical TrialsCollaborationsCombined Modality TherapyConsensusConsumptionCreativenessDataDoseDrug KineticsEncapsulatedExperimental DesignsFosteringFred Hutchinson Cancer Research CenterGene ModifiedGenetic VariationGoalsHIVHIV InfectionsHIV antiretroviralHIV therapyHealth protectionHomeHumanImmunologicsIndividualInfrastructureInfusion proceduresIngestionInterruptionInterventionKineticsLinkLongevityLymphocyteMilitary PersonnelMissionModelingOutcomeOutcome MeasurePatternPeptide antibodiesPersonsProbabilityPublic HealthResearchResearch PersonnelRunningSafetyScheduleSiteTestingTherapeuticTimeTrainingTreatment EfficacyUnited States National Institutes of HealthVaccinationVaccine TherapyViralVirus Replicationantiproliferative agentsantiretroviral therapycollaboratorycombinatorialcontrol theorycostcurative treatmentseffective interventionexperimental studygene therapygene transplantation for gene therapyin silicoin vivoinnovationmathematical modelmultimodalitynanoparticlenonhuman primatepillpreventprocess optimizationprogramsresponsesimulationsocial stigmastem cellssynthetic antibodiestheoriestranslational therapeuticstransmission processtreatment durationviral rebound
项目摘要
PROJECT SUMMARY
Antiretroviral therapy (ART) suppresses HIV replication and allows a normal lifespan for infected persons, but
daily pill ingestion is required to avoid progression to AIDS and further HIV transmission. Multiple therapeutic
strategies are being considered to achieve a functional cure for HIV. However, to date, no single approach has
achieved sufficient potency for an HIV functional cure. Therefore, there is increasing agreement that an HIV cure
will require a multi-pronged approach. This proposal has the objective to identify optimal and feasible
combinations of investigational therapeutic approaches to achieve functional cure of HIV using data-validated
mathematical models. Our hypothesis is that data-validated mathematical models can identify specific
mechanisms of therapeutic combinations, by linking observed kinetics and potency with various quantifiable
outcome measures. Our specific aims will validate this hypothesis by fitting different mathematical models that
encapsulate competing possible mechanisms to outcome data from curative interventions currently under study,
including levels of different reservoir cellular subset, viral quantities, viral diversity and time to viral rebound.
Model selection theory will be used to identify the most parsimonious models that reliably explain experimental
results. We will use the most parsimonious model that recapitulated the data from each study to perform in silico
experiments. We will list all plausible combinations of therapeutic approaches and model each combination. We
will create combinatorial dose-response curves by running simulations for each combination by using the
parameterization obtained from the fits and by tuning the parameters for each therapy including dosing,
scheduling, and order of treatment. This proposal is significant because testing all possible combinations of
approaches is impractical, excessively time consuming and expensive. The inability to rigorously assess all
potential approaches is a critical barrier to achieve optimal outcomes. Therefore, our proposal is innovative
because we propose a rigorous, quantitative framework in which plausible combinations of available
interventions are considered and compared with the potential to identify which combination therapies most likely
will achieve a functional cure.
项目总结
抗逆转录病毒疗法(ART)抑制艾滋病毒复制,使感染者能够正常生存,但
需要每天服用避孕药,以避免发展为艾滋病和进一步的艾滋病毒传播。多重治疗
目前正在考虑实现艾滋病毒功能性治愈的战略。然而,到目前为止,还没有单一的方法
为艾滋病毒的功能性治愈提供了足够的效力。因此,越来越多的人同意艾滋病毒的治愈方法
将需要多管齐下。这项建议的目的是确定最佳和可行的
使用数据验证的研究治疗方法的组合来实现艾滋病毒的功能性治愈
数学模型。我们的假设是,经过数据验证的数学模型可以识别特定的
联合治疗的机制,通过将观察到的动力学和效力与各种可量化的
结果衡量标准。我们的具体目标将通过拟合不同的数学模型来验证这一假设
概括了相互竞争的可能机制,以从目前正在研究的治疗干预措施中产生数据,
包括不同存储细胞亚群的水平、病毒数量、病毒多样性和病毒反弹时间。
模型选择理论将被用来确定能够可靠地解释实验的最简约的模型
结果。我们将使用最简约的模型,该模型概括了每项研究的数据,并在计算机上执行
实验。我们将列出所有看似合理的治疗方法组合,并为每种组合建模。我们
将创建组合剂量反应曲线,方法是使用
从FITS和通过调整包括剂量的每个治疗的参数获得的参数化,
日程安排和治疗顺序。这项建议意义重大,因为测试所有可能的组合
方法是不切实际的,过于耗时和昂贵。无法严格评估所有
潜在的方法是实现最佳结果的关键障碍。因此,我们的建议是创新的
因为我们提出了一个严格的、量化的框架,在这个框架中,可用
考虑干预措施,并将其与确定哪种组合疗法最有可能的可能性进行比较
将实现一种功能性治愈。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Tisdell Schiffer其他文献
Joshua Tisdell Schiffer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Tisdell Schiffer', 18)}}的其他基金
Intense Validation of a Mathematical Model of Herpes Simplex Virus-2 Pathogenesis
单纯疱疹病毒 2 型发病机制数学模型的强化验证
- 批准号:
8434257 - 财政年份:2010
- 资助金额:
$ 46.59万 - 项目类别:
Intense Validation of a Mathematical Model of Herpes Simplex Virus-2 Pathogenesis
单纯疱疹病毒 2 型发病机制数学模型的强化验证
- 批准号:
7838589 - 财政年份:2010
- 资助金额:
$ 46.59万 - 项目类别:
Intense Validation of a Mathematical Model of Herpes Simplex Virus-2 Pathogenesis
单纯疱疹病毒 2 型发病机制数学模型的强化验证
- 批准号:
8034802 - 财政年份:2010
- 资助金额:
$ 46.59万 - 项目类别:
Intense Validation of a Mathematical Model of Herpes Simplex Virus-2 Pathogenesis
单纯疱疹病毒 2 型发病机制数学模型的强化验证
- 批准号:
8220961 - 财政年份:2010
- 资助金额:
$ 46.59万 - 项目类别:
Intense Validation of a Mathematical Model of Herpes Simplex Virus-2 Pathogenesis
单纯疱疹病毒 2 型发病机制数学模型的强化验证
- 批准号:
8628030 - 财政年份:2010
- 资助金额:
$ 46.59万 - 项目类别:
Establishing microbial and biochemical thresholds for development and persistence
建立发育和持久性的微生物和生化阈值
- 批准号:
8769641 - 财政年份:
- 资助金额:
$ 46.59万 - 项目类别:
相似海外基金
RESEARCH SUPPORT SERVICES FOR THE DIVISION OF ACQUIRED IMMUNODEFICIENCY SYNDROME
获得性免疫缺陷综合症分类的研究支持服务
- 批准号:
10219039 - 财政年份:2020
- 资助金额:
$ 46.59万 - 项目类别:
RESEARCH SUPPORT SERVICES FOR THE DIVISION OF ACQUIRED IMMUNODEFICIENCY SYNDROME
获得性免疫缺陷综合症分类的研究支持服务
- 批准号:
9981476 - 财政年份:2019
- 资助金额:
$ 46.59万 - 项目类别:
IGF::OT::IGF RESEARCH SUPPORT SERVICES FOR THE DIVISION OF ACQUIRED IMMUNODEFICIENCY SYNDROME
IGF::OT::IGF 针对获得性免疫缺陷综合症分类的研究支持服务
- 批准号:
9364184 - 财政年份:2016
- 资助金额:
$ 46.59万 - 项目类别:
Human Immunodeficiency Virus (HIV) and Acquired Immunodeficiency Syndrome (AIDS) in Saskatchewan- Where are we now and what does the future hold?
萨斯喀彻温省的人类免疫缺陷病毒(HIV)和获得性免疫缺陷综合症(艾滋病)——我们现在在哪里以及未来会怎样?
- 批准号:
236932 - 财政年份:2011
- 资助金额:
$ 46.59万 - 项目类别:
Miscellaneous Programs
ACQUIRED IMMUNODEFICIENCY SYNDROME RESEARCH REVIEW COMMI
获得性免疫缺陷综合症研究审查委员会
- 批准号:
3554155 - 财政年份:1991
- 资助金额:
$ 46.59万 - 项目类别:
ACQUIRED IMMUNODEFICIENCY SYNDROME RESEARCH REVIEW COMMI
获得性免疫缺陷综合症研究审查委员会
- 批准号:
3554156 - 财政年份:1991
- 资助金额:
$ 46.59万 - 项目类别:
ACQUIRED IMMUNODEFICIENCY SYNDROME RESEARCH REVIEW
获得性免疫缺陷综合症研究综述
- 批准号:
2063342 - 财政年份:1991
- 资助金额:
$ 46.59万 - 项目类别: