Individually-tailored clinical decision support for management of indeterminate pulmonary nodules
针对不确定肺结节管理的个性化临床决策支持
基本信息
- 批准号:10539247
- 负责人:
- 金额:$ 44.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressBeliefBenignCancerousClinicalClinical DataComputer softwareDataData SetDatabasesDecision MakingDecision TreesDependenceDevelopmentDiagnosisDiagnosticDiseaseDisease modelEarly DiagnosisElectronic Health RecordEvaluationEventEvolutionFrequenciesFutureGoalsGuidelinesImageIndividualInformaticsLeadershipLife ExpectancyLogistic RegressionsLungLung noduleMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of lungMedical HistoryMedical centerMethodologyMethodsModelingNoduleOnline SystemsOutcomePatientsPerformancePhysiciansPoliciesPopulationPractice GuidelinesProbabilityProcessRecommendationRecording of previous eventsResearchResearch PersonnelResourcesSamplingSeriesSmokerStatistical ModelsSystemTimeTranslatingUnited StatesUpdateValidationX-Ray Computed Tomographyarmclinical biomarkersclinical decision supportclinical decision-makingcomputed tomography screeningcostdatabase structuredesigndiscrete timeempowermenthigh riskimaging biomarkerimaging informaticsimaging programimprovedindividual patientinnovationlow dose computed tomographylung cancer screeningmachine learning methodmortalitynovelpredictive modelingprospectivescreeningscreening guidelinesscreening policyscreening programstatistical and machine learningsupport toolstime usetooltranslational modelweb based interface
项目摘要
ABSTRACT (PROJECT DESCRIPTION)
The rollout of low-dose computed tomography (LDCT) lung screening programs is accelerating in the United
States, aiming for earlier detection of lung cancer to improve long-term survival. However, a consequence of
such imaging programs is the increased discovery of indeterminate pulmonary nodules (IPNs). Significant ques-
tions remain around the effective management of screen- and incidentally-detected IPNs: while many are benign,
a fraction will go on to become cancerous. Diagnostic models for IPNs and associated management guidelines
have been described previously, but their real-world validation is limited. Moreover, the majority of models only
use a “snapshot” of the IPN at a single point in time and fail to take into consideration progressive changes.
Opportunities now exist to advance such predictive models by encompassing the patient's evolving medical
history, combining clinical and imaging biomarkers to improve prediction and individually-tailor the management
of IPNs over time.
The objective of this imaging informatics proposal is the development of a clinical decision support tool for the
management of screen- and incidentally-detected IPNs. We address two key challenges: 1) the development of
a continuous-time model for predicting how the IPN will evolve; and 2) the use of this prediction to determine a
series of actions over time that will optimize (screening) outcomes for the individual. We first explore the devel-
opment of a continuous time belief network (CTBN), a temporal probabilistic model to predict the likelihood of a
patient to develop lung cancer. Unlike traditional approaches, CTBNs do not require fixed sampling frequency of
the data over time (e.g., all observations made annually) and are thus more amenable to real-world clinical
settings and observational datasets. The probabilities computed through the CTBN are subsequently input into
a partially-observable Markov decision process (POMDP) to guide IPN management decisions. From the
POMDP, policies (sequences of actions over time) can be chosen to achieve a desired goal (e.g., minimizing
time to diagnosis), given past and current observations/decisions for an individual. For both the CTBN and
POMDP, we explore novel methods in the design and implementation, overcoming computational challenges to
realize translation of these models into practice. A web-based interface is implemented, providing a clinical de-
cision making tool for physicians to understand the models' recommendations. Evaluation focuses on assessing
the performance of the CTBN and POMDP relative to known outcomes and compared to other conventional
methods (e.g., logistic regression, decision trees, dynamic belief networks); as well as the overall impact of the
system to influence decision-making. This effort advances our past research in probabilistic models and capital-
izes on expertise in lung cancer screening, including past leadership of the National Lung Screening Trial (NLST).
The result of this effort will be a set of informatics-driven modeling tools and new temporal predictive models
informing IPN management.
摘要(项目描述)
美国正在加速推出低剂量计算机断层扫描 (LDCT) 肺部筛查项目
各州的目标是早期发现肺癌,以提高长期生存率。然而,一个后果是
此类成像程序是越来越多地发现不确定性肺结节(IPN)。重大问题
围绕屏幕和偶然检测到的 IPN 的有效管理仍然存在一些问题:虽然许多是良性的,
一小部分会继续癌变。 IPN 诊断模型和相关管理指南
之前已经描述过,但它们在现实世界中的验证是有限的。而且,大多数型号仅
使用 IPN 在单个时间点的“快照”,而没有考虑渐进的变化。
现在有机会通过涵盖患者不断发展的医疗状况来推进此类预测模型
历史记录,结合临床和影像生物标志物以改进预测并单独定制管理
随着时间的推移,IPN 的数量。
该成像信息学提案的目标是开发临床决策支持工具
管理屏幕和偶然检测到的 IPN。我们解决两个关键挑战:1)
用于预测 IPN 将如何演变的连续时间模型; 2) 使用该预测来确定
随着时间的推移,一系列行动将优化(筛选)个人的结果。我们首先探索开发
连续时间置信网络 (CTBN) 的运行,这是一种时间概率模型,用于预测某个事件的可能性
患者发展为肺癌。与传统方法不同,CTBN 不需要固定的采样频率
随着时间的推移数据(例如,每年进行的所有观察),因此更适合现实世界的临床
设置和观测数据集。通过 CTBN 计算的概率随后被输入到
用于指导 IPN 管理决策的部分可观察马尔可夫决策过程 (POMDP)。从
POMDP,可以选择策略(随时间推移的行动序列)来实现期望的目标(例如,最小化
诊断时间),考虑到个人过去和当前的观察/决定。对于 CTBN 和
POMDP,我们在设计和实现中探索新颖的方法,克服计算挑战
实现将这些模型转化为实践。实施了基于网络的界面,提供了临床设计
医生了解模型建议的决策工具。评价重在评估
CTBN 和 POMDP 的性能相对于已知结果以及与其他传统方法的比较
方法(例如逻辑回归、决策树、动态信念网络);以及总体影响
影响决策的系统。这项工作推进了我们过去在概率模型和资本方面的研究
拥有肺癌筛查方面的专业知识,包括过去在国家肺部筛查试验 (NLST) 中的领导地位。
这项工作的结果将是一套信息学驱动的建模工具和新的时间预测模型
通知 IPN 管理。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Factors Associated With Nonadherence to Lung Cancer Screening Across Multiple Screening Time Points.
- DOI:10.1001/jamanetworkopen.2023.15250
- 发表时间:2023-05-01
- 期刊:
- 影响因子:13.8
- 作者:Lin, Yannan;Liang, Li-Jung;Ding, Ruiwen;Prosper, Ashley Elizabeth;Aberle, Denise R.;Hsu, William
- 通讯作者:Hsu, William
Generalizability and Transportability of the National Lung Screening Trial Data: Extending Trial Results to Different Populations.
- DOI:10.1158/1055-9965.epi-21-0585
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Inoue K;Hsu W;Arah OA;Prosper AE;Aberle DR;Bui AAT
- 通讯作者:Bui AAT
Association of Intensive Blood Pressure Control and Living Arrangement on Cardiovascular Outcomes by Race: Post Hoc Analysis of SPRINT Randomized Clinical Trial.
- DOI:10.1001/jamanetworkopen.2022.2037
- 发表时间:2022-03-01
- 期刊:
- 影响因子:13.8
- 作者:Inoue, Kosuke;Watson, Karol E.;Kondo, Naoki;Horwich, Tamara;Hsu, William;Bui, Alex A. T.;Duru, O. Kenrik
- 通讯作者:Duru, O. Kenrik
AdaDiag: Adversarial Domain Adaptation of Diagnostic Prediction with Clinical Event Sequences.
- DOI:10.1016/j.jbi.2022.104168
- 发表时间:2022-10
- 期刊:
- 影响因子:4.5
- 作者:Zhang, Tianran;Chen, Muhao;Bui, Alex A. T.
- 通讯作者:Bui, Alex A. T.
An automated lung segmentation approach using bidirectional chain codes to improve nodule detection accuracy.
- DOI:10.1016/j.compbiomed.2014.12.008
- 发表时间:2015-03
- 期刊:
- 影响因子:7.7
- 作者:Shen S;Bui AA;Cong J;Hsu W
- 通讯作者:Hsu W
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DENISE R. ABERLE其他文献
DENISE R. ABERLE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DENISE R. ABERLE', 18)}}的其他基金
Integrated Molecular, Cellular, and Imaging Characterization of NLST detected lung cancer
NLST 检测肺癌的综合分子、细胞和成像特征
- 批准号:
10415430 - 财政年份:2021
- 资助金额:
$ 44.76万 - 项目类别:
Individually-tailored clinical decision support for management of indeterminate pulmonary nodules
针对不确定肺结节管理的个性化临床决策支持
- 批准号:
10307996 - 财政年份:2018
- 资助金额:
$ 44.76万 - 项目类别:
EFIRM-Liquid Biopsy (eLB): Ultrasensitive ctDNA and miRNA Detection for Early Assessment of Lung Cancer
EFIRM-液体活检 (eLB):用于肺癌早期评估的超灵敏 ctDNA 和 miRNA 检测
- 批准号:
10225427 - 财政年份:2018
- 资助金额:
$ 44.76万 - 项目类别:
EFIRM-Liquid Biopsy (eLB): Ultrasensitive ctDNA and miRNA Detection for Early Assessment of Lung Cancer
EFIRM-液体活检 (eLB):用于肺癌早期评估的超灵敏 ctDNA 和 miRNA 检测
- 批准号:
9982813 - 财政年份:2018
- 资助金额:
$ 44.76万 - 项目类别:
EFIRM Liquid Biopsy Research Laboratory: Early Lung Cancer Assessment
EFIRM 液体活检研究实验室:早期肺癌评估
- 批准号:
10763321 - 财政年份:2018
- 资助金额:
$ 44.76万 - 项目类别:
EFIRM-Liquid Biopsy (eLB): Ultrasensitive ctDNA and miRNA Detection for Early Assessment of Lung Cancer
EFIRM-液体活检 (eLB):用于肺癌早期评估的超灵敏 ctDNA 和 miRNA 检测
- 批准号:
10456340 - 财政年份:2018
- 资助金额:
$ 44.76万 - 项目类别:
Individually-tailored clinical decision support for management of indeterminate pulmonary nodules
针对不确定肺结节管理的个性化临床决策支持
- 批准号:
10055957 - 财政年份:2018
- 资助金额:
$ 44.76万 - 项目类别:
Molecular and Imaging Biomarkers for Early Lung Cancer Detection in the Setting of Indeterminate Pulmonary Nodules
不确定肺结节中早期肺癌检测的分子和影像生物标志物
- 批准号:
10231155 - 财政年份:2016
- 资助金额:
$ 44.76万 - 项目类别:
Molecular and Imaging Biomarkers for Early Lung Cancer Detection in the Setting of Indeterminate Pulmonary Nodules
不确定肺结节中早期肺癌检测的分子和影像生物标志物
- 批准号:
10018815 - 财政年份:2016
- 资助金额:
$ 44.76万 - 项目类别:
The Boston University-UCLA Lung Cancer Biomarker Development Lab
波士顿大学-加州大学洛杉矶分校肺癌生物标志物开发实验室
- 批准号:
9277841 - 财政年份:2016
- 资助金额:
$ 44.76万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 44.76万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 44.76万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 44.76万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 44.76万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 44.76万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 44.76万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 44.76万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 44.76万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 44.76万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 44.76万 - 项目类别:
Research Grant














{{item.name}}会员




