Individually-tailored clinical decision support for management of indeterminate pulmonary nodules

针对不确定肺结节管理的个性化临床决策支持

基本信息

  • 批准号:
    10539247
  • 负责人:
  • 金额:
    $ 44.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-12-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT (PROJECT DESCRIPTION) The rollout of low-dose computed tomography (LDCT) lung screening programs is accelerating in the United States, aiming for earlier detection of lung cancer to improve long-term survival. However, a consequence of such imaging programs is the increased discovery of indeterminate pulmonary nodules (IPNs). Significant ques- tions remain around the effective management of screen- and incidentally-detected IPNs: while many are benign, a fraction will go on to become cancerous. Diagnostic models for IPNs and associated management guidelines have been described previously, but their real-world validation is limited. Moreover, the majority of models only use a “snapshot” of the IPN at a single point in time and fail to take into consideration progressive changes. Opportunities now exist to advance such predictive models by encompassing the patient's evolving medical history, combining clinical and imaging biomarkers to improve prediction and individually-tailor the management of IPNs over time. The objective of this imaging informatics proposal is the development of a clinical decision support tool for the management of screen- and incidentally-detected IPNs. We address two key challenges: 1) the development of a continuous-time model for predicting how the IPN will evolve; and 2) the use of this prediction to determine a series of actions over time that will optimize (screening) outcomes for the individual. We first explore the devel- opment of a continuous time belief network (CTBN), a temporal probabilistic model to predict the likelihood of a patient to develop lung cancer. Unlike traditional approaches, CTBNs do not require fixed sampling frequency of the data over time (e.g., all observations made annually) and are thus more amenable to real-world clinical settings and observational datasets. The probabilities computed through the CTBN are subsequently input into a partially-observable Markov decision process (POMDP) to guide IPN management decisions. From the POMDP, policies (sequences of actions over time) can be chosen to achieve a desired goal (e.g., minimizing time to diagnosis), given past and current observations/decisions for an individual. For both the CTBN and POMDP, we explore novel methods in the design and implementation, overcoming computational challenges to realize translation of these models into practice. A web-based interface is implemented, providing a clinical de- cision making tool for physicians to understand the models' recommendations. Evaluation focuses on assessing the performance of the CTBN and POMDP relative to known outcomes and compared to other conventional methods (e.g., logistic regression, decision trees, dynamic belief networks); as well as the overall impact of the system to influence decision-making. This effort advances our past research in probabilistic models and capital- izes on expertise in lung cancer screening, including past leadership of the National Lung Screening Trial (NLST). The result of this effort will be a set of informatics-driven modeling tools and new temporal predictive models informing IPN management.
摘要(项目说明)

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Factors Associated With Nonadherence to Lung Cancer Screening Across Multiple Screening Time Points.
  • DOI:
    10.1001/jamanetworkopen.2023.15250
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    13.8
  • 作者:
    Lin, Yannan;Liang, Li-Jung;Ding, Ruiwen;Prosper, Ashley Elizabeth;Aberle, Denise R.;Hsu, William
  • 通讯作者:
    Hsu, William
Association of Intensive Blood Pressure Control and Living Arrangement on Cardiovascular Outcomes by Race: Post Hoc Analysis of SPRINT Randomized Clinical Trial.
  • DOI:
    10.1001/jamanetworkopen.2022.2037
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
    13.8
  • 作者:
    Inoue, Kosuke;Watson, Karol E.;Kondo, Naoki;Horwich, Tamara;Hsu, William;Bui, Alex A. T.;Duru, O. Kenrik
  • 通讯作者:
    Duru, O. Kenrik
AdaDiag: Adversarial Domain Adaptation of Diagnostic Prediction with Clinical Event Sequences.
  • DOI:
    10.1016/j.jbi.2022.104168
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Zhang, Tianran;Chen, Muhao;Bui, Alex A. T.
  • 通讯作者:
    Bui, Alex A. T.
An automated lung segmentation approach using bidirectional chain codes to improve nodule detection accuracy.
  • DOI:
    10.1016/j.compbiomed.2014.12.008
  • 发表时间:
    2015-03
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Shen S;Bui AA;Cong J;Hsu W
  • 通讯作者:
    Hsu W
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DENISE R. ABERLE其他文献

DENISE R. ABERLE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DENISE R. ABERLE', 18)}}的其他基金

Integrated Molecular, Cellular, and Imaging Characterization of NLST detected lung cancer
NLST 检测肺癌的综合分子、细胞和成像特征
  • 批准号:
    10415430
  • 财政年份:
    2021
  • 资助金额:
    $ 44.76万
  • 项目类别:
Individually-tailored clinical decision support for management of indeterminate pulmonary nodules
针对不确定肺结节管理的个性化临床决策支持
  • 批准号:
    10307996
  • 财政年份:
    2018
  • 资助金额:
    $ 44.76万
  • 项目类别:
EFIRM-Liquid Biopsy (eLB): Ultrasensitive ctDNA and miRNA Detection for Early Assessment of Lung Cancer
EFIRM-液体活检 (eLB):用于肺癌早期评估的超灵敏 ctDNA 和 miRNA 检测
  • 批准号:
    9982813
  • 财政年份:
    2018
  • 资助金额:
    $ 44.76万
  • 项目类别:
EFIRM Liquid Biopsy Research Laboratory: Early Lung Cancer Assessment
EFIRM 液体活检研究实验室:早期肺癌评估
  • 批准号:
    10763321
  • 财政年份:
    2018
  • 资助金额:
    $ 44.76万
  • 项目类别:
EFIRM-Liquid Biopsy (eLB): Ultrasensitive ctDNA and miRNA Detection for Early Assessment of Lung Cancer
EFIRM-液体活检 (eLB):用于肺癌早期评估的超灵敏 ctDNA 和 miRNA 检测
  • 批准号:
    10225427
  • 财政年份:
    2018
  • 资助金额:
    $ 44.76万
  • 项目类别:
EFIRM-Liquid Biopsy (eLB): Ultrasensitive ctDNA and miRNA Detection for Early Assessment of Lung Cancer
EFIRM-液体活检 (eLB):用于肺癌早期评估的超灵敏 ctDNA 和 miRNA 检测
  • 批准号:
    10456340
  • 财政年份:
    2018
  • 资助金额:
    $ 44.76万
  • 项目类别:
Individually-tailored clinical decision support for management of indeterminate pulmonary nodules
针对不确定肺结节管理的个性化临床决策支持
  • 批准号:
    10055957
  • 财政年份:
    2018
  • 资助金额:
    $ 44.76万
  • 项目类别:
Molecular and Imaging Biomarkers for Early Lung Cancer Detection in the Setting of Indeterminate Pulmonary Nodules
不确定肺结节中早期肺癌检测的分子和影像生物标志物
  • 批准号:
    10018815
  • 财政年份:
    2016
  • 资助金额:
    $ 44.76万
  • 项目类别:
Molecular and Imaging Biomarkers for Early Lung Cancer Detection in the Setting of Indeterminate Pulmonary Nodules
不确定肺结节中早期肺癌检测的分子和影像生物标志物
  • 批准号:
    10231155
  • 财政年份:
    2016
  • 资助金额:
    $ 44.76万
  • 项目类别:
The Boston University-UCLA Lung Cancer Biomarker Development Lab
波士顿大学-加州大学洛杉矶分校肺癌生物标志物开发实验室
  • 批准号:
    9277841
  • 财政年份:
    2016
  • 资助金额:
    $ 44.76万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 44.76万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.76万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 44.76万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.76万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 44.76万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 44.76万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.76万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 44.76万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 44.76万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.76万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了