Characterization and membrane-biogenesis of Streptococcus mutans magnesium transporters
变形链球菌镁转运蛋白的表征和膜生物发生
基本信息
- 批准号:10544751
- 负责人:
- 金额:$ 15.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlloysAnti-Bacterial AgentsAntibioticsBacteriaBacterial ProteinsBinding ProteinsBiochemicalBioinformaticsBiological ProcessCationsCellsChargeCommunicable DiseasesCompetenceDataDentalDental EnamelDental ImplantsDental cariesDependenceDevelopmentDivalent CationsEndocarditisEnvironmentEnzymesEscape MutantEvaluationExposure toFoundationsFutureGenesGeneticGenetic ScreeningGenetic TranscriptionGoalsGrowthHealth Care CostsHomeostasisHomologous GeneHumanHuman bodyImplantInfective endocarditisIonsMagnesiumMeasurementMembraneMembrane ProteinsMetalsMicrobial BiofilmsMolecular CloningMutagenesisMycobacterium tuberculosisNucleic AcidsOral cavityPathway interactionsPersonsPhenotypePlayPredispositionProtein translocationProteinsProteomicsQuality of lifeRegulationResistanceResistance developmentRibosomesRoleSalivaSaltsSignal Recognition ParticleStreptococcus mutansSuppressor MutationsSurgeonTherapeuticTooth structureToothpasteToxic effectTransition ElementsVertebratesVirulenceWorkanticariesbonecofactorcombinatorialdental agentdivalent metalefflux pumpexperienceforward geneticsgain of functiongenetic approachmembrane biogenesismutantnoveloral bacteriaoral pathogenoral streptococcipathogenprotein transportreverse geneticsskillstooluptake
项目摘要
Project Summary
Dental caries is a ubiquitous infectious disease that impacts the quality of life of billions of people
worldwide. According to the Surgeon General (2020), ~USD 125 billion dollars are spent annually on
related treatments in the USA alone. A major causative agent of dental caries is Streptococcus mutans,
which is also associated with infectious endocarditis. The native environment of S. mutans is rich in
metal cations including Ca2+, K+, and Mg2+. In fact, Mg2+ is the most abundant divalent metal cation in
bacteria and fourth most abundant in vertebrates including humans. Of the total Mg2+ content in the
human body, 60‐70% is found in bones and teeth. Therefore, the oral bacterium, S. mutans, is
constantly exposed to Mg2+ salts. Magnesium is an important component of toothpastes and dental
implants. Despite its abundance and its requirement to support bacterial growth and virulence , Mg2+
homeostasis has not yet been studied in S. mutans, or other oral streptococci. A few isolated studies
discussed the significance of supplemental Mg2+ salts for S. mutans biofilm formation and genetic
competence, but Mg2 transport is not understood. We will address Mg2+ homeostasis from a novel
perspective, where we will not only characterize the transporters, but also study their insertion into
the membrane. Membrane localization/insertion is a key requisite for the proper functioning of all
membrane proteins. Deletion of putative transporters singly and in combination, followed by
measurement of cellular metal content will establish identity of Mg2+ transporters. Compensatory
uptake/efflux by other divalent metal cation transporters have been recognized to interfere with Mg2+
homeostasis in other bacteria. Therefore, Mn2+ and Fe2+ transporters are also included in this study.
Mutants defective in putative Mg2+ transporter(s) will be evaluated at the level of transcription,
cellular metal content, and insertion into membrane. Next, we will use a forward genetic screen to
identify gain of function/suppressor mutations in Mg2+‐replete/deplete conditions using mutants
defective in Mg2+ transporters, or in mutants lacking membrane biogenesis machinery components
that impact Mg2+ homeostasis. We appreciate the significance of proper localization of transporters to
their activity; therefore, we will apply the experience/tools/skills of our lab to study that aspect of
magnesium homeostasis in S. mutans. Characterization of insertion pathways will involve
construction and characterization of combinatorial mutants of membrane biogenesis components
with Mg2+ transporters, and phenotypic analysis following that used for characterization of the
transport mutants. Molecular cloning, reverse and forward genetics, bioinformatics, and biochemical
approaches will be utilized to address the aims of this proposal. Ultimately a better understanding of
Mg2+ homeostasis in S. mutans is expected to guide future development of novel anti‐caries strategies.
项目摘要
龋齿是一种无处不在的传染病,影响了数十亿人的生活质量
全世界。根据外科医生(2020年)的说法,每年花费1.25亿美元
仅在美国相关治疗。龋齿的主要病因是链球菌突变,
这也与感染性心内膜炎有关。 S. mutans的本地环境丰富
金属阳离子在内,包括Ca2+,K+和Mg2+。实际上,MG2+是最丰富的二价金属阳离子
细菌和包括人类在内的脊椎动物中最丰富的第四大。 MG2+内容的
人体在骨骼和牙齿中发现60-70%。因此,口腔细菌,链球菌是
不断暴露于MG2+沙拉。镁是牙膏和牙齿的重要组成部分
植入物。尽管它丰富及其支持细菌生长和病毒的要求,但MG2+
尚未在S. mutans或其他链球菌中研究稳态。一些孤立的研究
讨论了补充MG2+销售对链球菌生物膜形成和遗传的重要性
能力,但是MG2运输尚不清楚。我们将从小说中解决MG2+稳态
透视图,我们不仅会表征转运蛋白,而且还研究了他们的插入
膜。膜定位/插入是所有人正确运作的关键必需品
膜蛋白。删除推定运输商的删除,然后结合起来
细胞金属含量的测量将建立MG2+转运蛋白的身份。补偿
其他二价金属阳离子转运蛋白的吸收/排出已被认为干扰Mg2+
其他细菌中的稳态。因此,本研究还包括MN2+和Fe2+转运蛋白。
假定MG2+转运蛋白(S)中有缺陷的突变体将在转录水平上进行评估,
细胞金属含量,并插入膜。接下来,我们将使用前遗传屏幕
使用突变体确定在MG2+重复/耗尽条件下的功能/抑制突变的增益
MG2+转运蛋白或缺乏膜生物发生机制成分的突变体中有缺陷
这会影响MG2+稳态。我们赞赏转运蛋白适当定位到的重要性
他们的活动;因此,我们将运用实验室的经验/工具/技能来研究
S. mutans中的镁稳态。插入途径的表征将涉及
膜生物发生成分组合突变体的结构和表征
使用MG2+转运蛋白和表型分析,用于表征
运输突变体。分子克隆,反向和正向遗传学,生物信息学和生化
方法将用于解决该提案的目的。最终对
预计MG2+稳态有望指导新型反卡里斯策略的未来发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Surabhi Mishra其他文献
Surabhi Mishra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Surabhi Mishra', 18)}}的其他基金
Characterization and membrane-biogenesis of Streptococcus mutans magnesium transporters
变形链球菌镁转运蛋白的表征和膜生物发生
- 批准号:
10353066 - 财政年份:2022
- 资助金额:
$ 15.25万 - 项目类别:
相似国自然基金
轻量化多功能因瓦合金多孔材料增材制造与性能表征评价
- 批准号:12372133
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
中熵合金低温协同强化及其多场耦合环境下应力腐蚀行为的研究
- 批准号:52371070
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
钛合金表面微区电势差特征促细胞功能表达及其免疫微环境作用机制
- 批准号:32371390
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
增材制造锌镁合金复合椎间融合器降解调控机制与生物学效应研究
- 批准号:52301302
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
Hf对激光选区熔化CM247LC镍基高温合金裂纹形成与高温强韧性的作用机理
- 批准号:52301060
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Characterization and membrane-biogenesis of Streptococcus mutans magnesium transporters
变形链球菌镁转运蛋白的表征和膜生物发生
- 批准号:
10353066 - 财政年份:2022
- 资助金额:
$ 15.25万 - 项目类别:
Nutrient-Derived Alloys with Nanostructured Surfaces for Distraction Osteogenesis
用于牵引成骨的具有纳米结构表面的营养衍生合金
- 批准号:
10306931 - 财政年份:2020
- 资助金额:
$ 15.25万 - 项目类别:
Nutrient-Derived Alloys with Nanostructured Surfaces for Distraction Osteogenesis
用于牵引成骨的具有纳米结构表面的营养衍生合金
- 批准号:
9895281 - 财政年份:2019
- 资助金额:
$ 15.25万 - 项目类别:
Nutrient-Derived Alloys with Nanostructured Surfaces for Distraction Osteogenesis
用于牵引成骨的具有纳米结构表面的营养衍生合金
- 批准号:
10063989 - 财政年份:2019
- 资助金额:
$ 15.25万 - 项目类别:
Antibacterial Biocompatible Bioresorbable Alloys for Musculoskeletal Implants
用于肌肉骨骼植入物的抗菌生物相容性生物可吸收合金
- 批准号:
9038737 - 财政年份:2016
- 资助金额:
$ 15.25万 - 项目类别: