Intraoperative integration of artificial intelligence during cystoscopic surgery

膀胱镜手术中人工智能的术中整合

基本信息

  • 批准号:
    10544344
  • 负责人:
  • 金额:
    $ 49.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Bladder cancer is the sixth most common cancer in the U.S., has one of the highest recurrence rates of all cancers, and is the most expensive cancer to treat from diagnosis to death. Current standard for bladder cancer diagnosis relies on clinic-based white light cystoscopy for initial screening, followed by transurethral resection of bladder tumor in the operating room for pathologic diagnosis and local staging. White light cystoscopy has several well recognized shortcomings, particularly incomplete detection, thereby leading to suboptimal resection and contributing to cancer recurrence and progression. Our goal is to improve outcomes for bladder cancer patients through integration of a deep learning algorithm to improve cystoscopic detection and enhance surgical resection. Artificial intelligence (AI)-based on deep neural networks have demonstrated remarkable capacity to learn complex relationships and incorporate existing knowledge into the inference model. We hypothesize that AI- augmented detection of bladder tumor will improve diagnostic cystoscopy in the clinic setting to identify suspicious lesions and improve the quality of transurethral resection in the operating room, thereby reducing overall cancer recurrence and outcome. Towards the goal of establishing a paradigm of AI-based framework for augmented detection of bladder cancer, we will leverage our strong preliminary data and outstanding environment in AI research. We propose three specific aims: 1) To curate a high-quality annotated cystoscopy imaging dataset to optimize deep neural network CystoNet; 2) To design and optimize CystoNet for real-time cystoscopic navigation and cancer detection; and 3) To conduct a prospective multicenter validation of CystoNet during bladder cancer surgery. Successful completion of the studies proposed here will serve to translate deep learning algorithm to the dynamic environment of cystoscopic surgery without the need for specialized instrumentaitons. We foresee our approach will improve the outcome of a major cancer and genearlizable to other organ systems amenable for endsocopic interventions.
项目摘要 膀胱癌是美国第六大常见癌症,是所有癌症中复发率最高的 是从诊断到死亡治疗费用最高的癌症。膀胱的现行标准 癌症诊断依赖于基于临床的白色光膀胱镜检查进行初步筛查,然后经尿道 在手术室切除膀胱肿瘤进行病理诊断和局部分期。白色光 膀胱镜检查具有几个公认的缺点,特别是不完全检测,从而导致 次优切除和促进癌症复发和进展。我们的目标是改善结果 通过整合深度学习算法来改善膀胱镜检测, 并加强手术切除。 人工智能(AI)-基于深度神经网络已经证明了显着的学习能力 复杂的关系,并将现有的知识纳入推理模型。我们假设AI- 膀胱肿瘤的增强检测将改善临床环境中的诊断性膀胱镜检查,以识别 可疑病变,提高手术室经尿道电切质量,从而减少 总体癌症复发和结果。迈向建立基于AI的框架范式的目标 为了增强膀胱癌的检测,我们将利用我们强大的初步数据和杰出的 AI研究的环境。我们提出三个具体目标:1)策划高质量的注释膀胱镜检查 成像数据集,以优化深度神经网络CystoNet; 2)设计和优化CystoNet, 膀胱镜导航和癌症检测;以及3)进行前瞻性多中心验证, 膀胱癌手术中的CystoNet。 成功完成这里提出的研究将有助于将深度学习算法转化为 膀胱镜手术的动态环境,而无需专门的仪器。我们预见 我们的方法将改善一种主要癌症的预后, 用于内窥镜介入。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOSEPH C LIAO其他文献

JOSEPH C LIAO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOSEPH C LIAO', 18)}}的其他基金

Intraoperative integration of artificial intelligence during cystoscopic surgery
膀胱镜手术中人工智能的术中整合
  • 批准号:
    10365872
  • 财政年份:
    2022
  • 资助金额:
    $ 49.61万
  • 项目类别:
BCCMA: Basic and Translational Mechanisms of Cancer Initiation of the Urothelium in Veterans Exposed to Carcinogens: Leveraging Artificial Neural Networks to Enhance Detection of Carcinoma in situ
BCCMA:暴露于致癌物的退伍军人尿路上皮癌症发生的基本和转化机制:利用人工神经网络增强原位癌的检测
  • 批准号:
    10260145
  • 财政年份:
    2021
  • 资助金额:
    $ 49.61万
  • 项目类别:
MagSToNE - a magnetic system for kidney stone fragment elimination
MagSToNE - 用于消除肾结石碎片的磁性系统
  • 批准号:
    10354258
  • 财政年份:
    2021
  • 资助金额:
    $ 49.61万
  • 项目类别:
MagSToNE - a magnetic system for kidney stone fragment elimination
MagSToNE - 用于消除肾结石碎片的磁性系统
  • 批准号:
    10491338
  • 财政年份:
    2021
  • 资助金额:
    $ 49.61万
  • 项目类别:
BCCMA: Basic and Translational Mechanisms of Cancer Initiation of the Urothelium in Veterans Exposed to Carcinogens: Leveraging Artificial Neural Networks to Enhance Detection of Carcinoma in situ
BCCMA:暴露于致癌物的退伍军人尿路上皮癌症发生的基本和转化机制:利用人工神经网络增强原位癌的检测
  • 批准号:
    10513315
  • 财政年份:
    2021
  • 资助金额:
    $ 49.61万
  • 项目类别:
Personalized assessment of bladder cancer treatment response using urinary molecular biomarkers
使用尿液分子生物标志物对膀胱癌治疗反应进行个性化评估
  • 批准号:
    10514572
  • 财政年份:
    2020
  • 资助金额:
    $ 49.61万
  • 项目类别:
Personalized assessment of bladder cancer treatment response using urinary molecular biomarkers
使用尿液分子生物标志物对膀胱癌治疗反应进行个性化评估
  • 批准号:
    10293596
  • 财政年份:
    2020
  • 资助金额:
    $ 49.61万
  • 项目类别:
Personalized assessment of bladder cancer treatment response using urinary molecular biomarkers
使用尿液分子生物标志物对膀胱癌治疗反应进行个性化评估
  • 批准号:
    10015540
  • 财政年份:
    2020
  • 资助金额:
    $ 49.61万
  • 项目类别:
A Droplet-based single cell platform for pathogen identification and AST
用于病原体识别和 AST 的基于 Droplet 的单细胞平台
  • 批准号:
    8875827
  • 财政年份:
    2015
  • 资助金额:
    $ 49.61万
  • 项目类别:
A Droplet-based single cell platform for pathogen identification and AST
用于病原体识别和 AST 的基于 Droplet 的单细胞平台
  • 批准号:
    9038992
  • 财政年份:
    2015
  • 资助金额:
    $ 49.61万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 49.61万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了