Studies of Allostery between Multi-domain Proteins and Nucleic Acid Complexes

多结构域蛋白与核酸复合物的变构研究

基本信息

  • 批准号:
    10545750
  • 负责人:
  • 金额:
    $ 34.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-02-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

Project Summary The PI Batista from Yale and co-investigators (Lisi, Brown University, and Palermo, UC Riverside) will investigate allosteric pathways in the CRISPR-Cas9 system – composed of the multi-domain endonuclease Cas9 in complex with RNA and DNA. The system allows for studies of long-range signaling critical for allosteric mechanisms that achieve enhanced selectively and tunability of the protein/nucleic acid complex response. CRISPR-Cas9 is an innovative therapeutic tool with widely demonstrated capabilities for genome editing. An outstanding challenge of great research interest is to develop a detailed understanding of allosteric signals in CRISPR-Cas9 responsible for the DNA editing capability. Such understanding would have profound implications for bioengineering and precision medicine, as well as for establishing modern paradigms of allosteric regulation in protein/nucleic acid machines. A substantial hurdle in investigating the mechanisms of large protein/nucleic acid complexes is the inherent difficulty of adapting experimental and computational methodologies to capture the intrinsic flexibility of these structures essential for functionality. We propose to implement a synergistic approach of solution NMR and molecular dynamics (MD) in combination with established and novel methods for analysis of allosteric networks to elucidate the structural and dynamic determinants of allosteric signaling in CRISPR-Cas9. We have recently identified a pathway of dynamic communication connecting multiple domains of Cas9 through millisecond timescale motion that spans its critical nucleases, consistent with a regulatory signal proposed through experimental characterization. Thus, the following hypotheses guide our specific aims: (i) A well-defined allosteric pathway controls the CRISPR-Cas9 functionality; (ii) The allosteric interplay between spatially distant protein domains activates the DNA nuclease function; (iii) Modulation of the allosteric motions through the mutation of critical residues achieves altered specificity; and (iv) Dynamically-driven signaling is an intrinsic property of protein-nucleic acid macromolecular complexes. Our specific aims are: Aim 1: Characterize the allosteric control of the HNH nuclease; Aim 2: Determine the allosteric pathway from HNH to RuvC and the allosteric role of the PAM recognition sequence; and Aim 3: Characterize the effect of mutations on the allosteric pathway. The research program involves multiple cycles of an iterative approach where, in each cycle, allosteric pathways are explored through the analysis of differential motions probed by liquid-NMR relaxation methods and computation (MD and network analysis), obtaining valuable information on key amino acid residues and specific interactions responsible for transmitting structural or dynamical changes spanning the allosteric and active sites. The resulting insight provides guidelines for the next round of studies of mutants and modulators in a joint experimental and theoretical effort to elucidate the CRISPR-Cas9 allosteric mechanisms.
项目摘要 来自耶鲁大学的皮巴蒂斯塔和合作调查员(利西,布朗大学,和巴勒莫,加州大学河滨分校)将 研究CRISPR-Cas9系统中的变构途径--由多结构域核酸内切酶组成 Cas9与RNA和DNA形成复合体。该系统允许研究对变构至关重要的远程信号 实现蛋白质/核酸复合体反应的选择性和可调性增强的机制。 CRISPR-Cas9是一种创新的治疗工具,具有广泛展示的基因组编辑能力。一个 极具研究兴趣的突出挑战是发展对变构信号的详细理解 CRISPR-CAS9负责DNA编辑能力。这样的理解将产生深远的影响 用于生物工程和精确医学,以及建立变构调节的现代范例 在蛋白质/核酸机器中。研究大蛋白质/大核机制的一个重大障碍 酸性络合物是采用实验和计算方法捕获的固有困难 这些结构的内在灵活性对于功能来说是必不可少的。我们建议实施一种协同 溶液核磁共振和分子动力学(MD)结合已有的和新的方法研究 分析变构网络以阐明变构信号的结构和动态决定因素 CRISPR-CAS9。我们最近发现了一条连接多个域的动态通信路径 通过跨越其关键核酸酶的毫秒时间尺度运动,与调控信号一致 提出通过实验进行表征。因此,以下假设指导我们的具体目标:(一)A 明确定义的变构途径控制CRISPR-Cas9功能;(Ii)变构相互作用 空间距离较远的蛋白质结构域激活DNA核酸酶功能;(Iii)对变构运动的调节 通过突变关键残基获得改变的特异性;以及(Iv)动态驱动的信号是一种 蛋白质-核酸大分子复合体的本征性质。我们的具体目标是:目标1:塑造 HNH核酸酶的变构控制;目标2:确定从HNH到RuvC的变构途径和 PAM识别序列的变构作用;以及目标3:表征突变对变构的影响 路径。研究方案涉及多个循环的迭代方法,其中在每个循环中,变构 通过对液体核磁共振弛豫方法探测的差异运动的分析,探索了路径。 计算(MD和网络分析),获得有关关键氨基酸残基和特定氨基酸的有价值信息 负责跨变构和活性中心传递结构或动态变化的相互作用。 由此得到的洞察力为下一轮联合突变体和调节子的研究提供了指导方针 实验和理论工作,以阐明CRISPR-Cas9变构机理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Victor S Batista其他文献

Regioselective Ultrafast Photoinduced Electron Transfer from Naphthols to Halocarbon Solvents.
从萘酚到卤代烃溶剂的区域选择性超快光致电子转移。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Subhajyoti Chaudhuri;Atanu Acharya;E. Nibbering;Victor S Batista
  • 通讯作者:
    Victor S Batista

Victor S Batista的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Victor S Batista', 18)}}的其他基金

Studies of Allostery between Multi-domain Proteins and Nucleic Acid Complexes
多结构域蛋白与核酸复合物的变构研究
  • 批准号:
    10331326
  • 财政年份:
    2021
  • 资助金额:
    $ 34.94万
  • 项目类别:
Computational and Biochemical Studies of Temperature Effects on Allostery in the Imidazole Glycerol Phosphate Synthase (IGPS) from T. maritima
温度对 T. maritima 咪唑甘油磷酸合酶 (IGPS) 变构影响的计算和生化研究
  • 批准号:
    10220056
  • 财政年份:
    2014
  • 资助金额:
    $ 34.94万
  • 项目类别:
Computational and Biochemical Studies of Allostery in the IGPS of T. maritima
T. maritima IGPS 变构的计算和生化研究
  • 批准号:
    8853887
  • 财政年份:
    2014
  • 资助金额:
    $ 34.94万
  • 项目类别:
Computational and Biochemical Studies of Allostery in the IGPS of T. maritima
T. maritima IGPS 变构的计算和生化研究
  • 批准号:
    8632085
  • 财政年份:
    2014
  • 资助金额:
    $ 34.94万
  • 项目类别:
Computational and Biochemical Studies of Temperature Effects on Allostery in the Imidazole Glycerol Phosphate Synthase (IGPS) from T. maritima
温度对 T. maritima 咪唑甘油磷酸合酶 (IGPS) 变构影响的计算和生化研究
  • 批准号:
    9978862
  • 财政年份:
    2014
  • 资助金额:
    $ 34.94万
  • 项目类别:
Studies of redox-active sites in Photosystem II
光系统 II 中氧化还原活性位点的研究
  • 批准号:
    7904243
  • 财政年份:
    2009
  • 资助金额:
    $ 34.94万
  • 项目类别:

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 34.94万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了