Studies of Allostery between Multi-domain Proteins and Nucleic Acid Complexes
多结构域蛋白与核酸复合物的变构研究
基本信息
- 批准号:10331326
- 负责人:
- 金额:$ 34.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAllosteric RegulationAllosteric SiteAmino AcidsBindingBiologicalBiological AssayBiomedical EngineeringCRISPR/Cas technologyClustered Regularly Interspaced Short Palindromic RepeatsCommunicationComplexComputer SimulationComputing MethodologiesCouplingDNADeoxyribonucleasesDistantDrug TargetingEngineeringEnsureEnzymesGaussian modelGuidelinesJointsLiquid substanceMacromolecular ComplexesMediatingMethodologyMethodsModernizationMolecularMotionMutagenesisMutationNucleic AcidsPathway AnalysisPathway interactionsProcessPropertyProtein EngineeringProteinsRNARelaxationResearchResearch PersonnelRoleSignal TransductionSiteSite-Directed MutagenesisSpecificitySpliceosomesStructureSystemTechniquesTertiary Protein StructureTherapeuticUniversitiesbasebiophysical analysisbiophysical techniquescomputer studiesdrug discoveryendonucleaseexperimental studyflexibilitygenome editingimprovedinnovationinsightinterestmacromoleculemillisecondmolecular dynamicsmutantnetwork modelsnovelnucleaseprecision medicineprogramsprotein complexrational designresponsesimulationsmall molecule inhibitortool
项目摘要
Project Summary
The PI Batista from Yale and co-investigators (Lisi, Brown University, and Palermo, UC Riverside) will
investigate allosteric pathways in the CRISPR-Cas9 system – composed of the multi-domain endonuclease
Cas9 in complex with RNA and DNA. The system allows for studies of long-range signaling critical for allosteric
mechanisms that achieve enhanced selectively and tunability of the protein/nucleic acid complex response.
CRISPR-Cas9 is an innovative therapeutic tool with widely demonstrated capabilities for genome editing. An
outstanding challenge of great research interest is to develop a detailed understanding of allosteric signals in
CRISPR-Cas9 responsible for the DNA editing capability. Such understanding would have profound implications
for bioengineering and precision medicine, as well as for establishing modern paradigms of allosteric regulation
in protein/nucleic acid machines. A substantial hurdle in investigating the mechanisms of large protein/nucleic
acid complexes is the inherent difficulty of adapting experimental and computational methodologies to capture
the intrinsic flexibility of these structures essential for functionality. We propose to implement a synergistic
approach of solution NMR and molecular dynamics (MD) in combination with established and novel methods for
analysis of allosteric networks to elucidate the structural and dynamic determinants of allosteric signaling in
CRISPR-Cas9. We have recently identified a pathway of dynamic communication connecting multiple domains
of Cas9 through millisecond timescale motion that spans its critical nucleases, consistent with a regulatory signal
proposed through experimental characterization. Thus, the following hypotheses guide our specific aims: (i) A
well-defined allosteric pathway controls the CRISPR-Cas9 functionality; (ii) The allosteric interplay between
spatially distant protein domains activates the DNA nuclease function; (iii) Modulation of the allosteric motions
through the mutation of critical residues achieves altered specificity; and (iv) Dynamically-driven signaling is an
intrinsic property of protein-nucleic acid macromolecular complexes. Our specific aims are: Aim 1: Characterize
the allosteric control of the HNH nuclease; Aim 2: Determine the allosteric pathway from HNH to RuvC and the
allosteric role of the PAM recognition sequence; and Aim 3: Characterize the effect of mutations on the allosteric
pathway. The research program involves multiple cycles of an iterative approach where, in each cycle, allosteric
pathways are explored through the analysis of differential motions probed by liquid-NMR relaxation methods and
computation (MD and network analysis), obtaining valuable information on key amino acid residues and specific
interactions responsible for transmitting structural or dynamical changes spanning the allosteric and active sites.
The resulting insight provides guidelines for the next round of studies of mutants and modulators in a joint
experimental and theoretical effort to elucidate the CRISPR-Cas9 allosteric mechanisms.
项目摘要
来自耶鲁大学的PI巴蒂斯塔和合作研究者(布朗大学的Lisi和加州大学滨江分校的巴勒莫)将
研究CRISPR-Cas9系统中的变构途径-由多结构域核酸内切酶组成
Cas9与RNA和DNA复合。该系统允许研究对变构至关重要的长距离信号传导。
实现蛋白质/核酸复合物应答的增强的选择性和可调谐性的机制。
CRISPR-Cas9是一种创新的治疗工具,具有广泛的基因组编辑能力。一个
巨大的研究兴趣的一个突出的挑战是发展一个详细的了解变构信号,
CRISPR-Cas9负责DNA编辑能力。这样的理解将产生深远的影响
生物工程和精准医学,以及建立现代变构调节范式
在蛋白质/核酸机器中。研究大蛋白质/核酸的机制的一个实质性障碍
酸络合物是适应实验和计算方法来捕获的固有困难
这些结构的内在灵活性对于功能性是必不可少的。我们建议实施一项协同
溶液NMR和分子动力学(MD)的方法与已建立的和新的方法相结合,
分析变构网络,以阐明变构信号传导的结构和动力学决定因素,
CRISPR-Cas9.我们最近发现了一条连接多个域的动态通信路径
Cas9通过毫秒级时间尺度运动跨越其关键核酸酶,与调节信号一致
通过实验表征提出。因此,以下假设指导我们的具体目标:(i)A
明确定义的变构途径控制CRISPR-Cas9功能性;(ii)CRISPR-Cas9与CRISPR-Cas9之间的变构相互作用
空间上远离的蛋白质结构域激活DNA核酸酶功能;(iii)变构运动的调节
通过关键残基的突变实现改变的特异性;和(iv)动态驱动的信号传导是一种
蛋白质-核酸大分子复合物内在性质。我们的具体目标是:目标1:
目的2:确定从HNH到RuvC的变构途径和HNH核酸酶的变构控制;
目的3:表征突变对PAM识别序列的变构作用的影响,
通路该研究计划涉及迭代方法的多个循环,其中在每个循环中,变构
通过液体NMR弛豫方法探测的微分运动分析探索途径,
计算(MD和网络分析),获得关键氨基酸残基和特定氨基酸残基的有价值的信息。
负责传递跨越变构和活性位点的结构或动力学变化的相互作用。
由此产生的洞察力为下一轮的突变体和调节剂的研究提供了指导方针,
实验和理论努力来阐明CRISPR-Cas9变构机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor S Batista其他文献
Regioselective Ultrafast Photoinduced Electron Transfer from Naphthols to Halocarbon Solvents.
从萘酚到卤代烃溶剂的区域选择性超快光致电子转移。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:5.7
- 作者:
Subhajyoti Chaudhuri;Atanu Acharya;E. Nibbering;Victor S Batista - 通讯作者:
Victor S Batista
Victor S Batista的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor S Batista', 18)}}的其他基金
Studies of Allostery between Multi-domain Proteins and Nucleic Acid Complexes
多结构域蛋白与核酸复合物的变构研究
- 批准号:
10545750 - 财政年份:2021
- 资助金额:
$ 34.87万 - 项目类别:
Computational and Biochemical Studies of Temperature Effects on Allostery in the Imidazole Glycerol Phosphate Synthase (IGPS) from T. maritima
温度对 T. maritima 咪唑甘油磷酸合酶 (IGPS) 变构影响的计算和生化研究
- 批准号:
10220056 - 财政年份:2014
- 资助金额:
$ 34.87万 - 项目类别:
Computational and Biochemical Studies of Allostery in the IGPS of T. maritima
T. maritima IGPS 变构的计算和生化研究
- 批准号:
8853887 - 财政年份:2014
- 资助金额:
$ 34.87万 - 项目类别:
Computational and Biochemical Studies of Allostery in the IGPS of T. maritima
T. maritima IGPS 变构的计算和生化研究
- 批准号:
8632085 - 财政年份:2014
- 资助金额:
$ 34.87万 - 项目类别:
Computational and Biochemical Studies of Temperature Effects on Allostery in the Imidazole Glycerol Phosphate Synthase (IGPS) from T. maritima
温度对 T. maritima 咪唑甘油磷酸合酶 (IGPS) 变构影响的计算和生化研究
- 批准号:
9978862 - 财政年份:2014
- 资助金额:
$ 34.87万 - 项目类别:
Studies of redox-active sites in Photosystem II
光系统 II 中氧化还原活性位点的研究
- 批准号:
7904243 - 财政年份:2009
- 资助金额:
$ 34.87万 - 项目类别:
相似海外基金
Molecular insights into the allosteric regulation of opioid receptors
阿片受体变构调节的分子见解
- 批准号:
DE240100931 - 财政年份:2024
- 资助金额:
$ 34.87万 - 项目类别:
Discovery Early Career Researcher Award
Allosteric regulation of lysine degradation as a novel pathophysiological mechanism in glutaric aciduria type 1
赖氨酸降解的变构调节作为 1 型戊二酸尿症的一种新的病理生理机制
- 批准号:
10720740 - 财政年份:2023
- 资助金额:
$ 34.87万 - 项目类别:
Elucidating the Mechanism for Allosteric Regulation of SIRT1 through the N-terminal Region
阐明 SIRT1 通过 N 末端区域变构调节的机制
- 批准号:
10627735 - 财政年份:2023
- 资助金额:
$ 34.87万 - 项目类别:
Allosteric Regulation of Actin Capping Protein: Mechanism and Significance
肌动蛋白加帽蛋白的变构调节:机制和意义
- 批准号:
10330809 - 财政年份:2022
- 资助金额:
$ 34.87万 - 项目类别:
Allosteric Regulation of Actin Capping Protein: Mechanism and Significance
肌动蛋白加帽蛋白的变构调节:机制和意义
- 批准号:
10797746 - 财政年份:2022
- 资助金额:
$ 34.87万 - 项目类别:
Structural and functional studies of allosteric regulation of metabolic enzymes
代谢酶变构调节的结构和功能研究
- 批准号:
RGPIN-2020-04281 - 财政年份:2022
- 资助金额:
$ 34.87万 - 项目类别:
Discovery Grants Program - Individual
Allosteric Regulation of Actin Capping Protein: Mechanism and Significance
肌动蛋白加帽蛋白的变构调节:机制和意义
- 批准号:
10552651 - 财政年份:2022
- 资助金额:
$ 34.87万 - 项目类别:
Allosteric regulation of human cystathionine beta-synthase
人胱硫醚β-合酶的变构调节
- 批准号:
10602404 - 财政年份:2022
- 资助金额:
$ 34.87万 - 项目类别:
Allosteric regulation of human cystathionine beta-synthase
人胱硫醚β-合酶的变构调节
- 批准号:
10381000 - 财政年份:2022
- 资助金额:
$ 34.87万 - 项目类别:
Structural basis for allosteric regulation of RyR1
RyR1 变构调节的结构基础
- 批准号:
10366087 - 财政年份:2021
- 资助金额:
$ 34.87万 - 项目类别: