Artificial Intelligence for Improved Breast Cancer Screening Accuracy: External Validation, Refinement, and Clinical Translation
人工智能提高乳腺癌筛查准确性:外部验证、细化和临床转化
基本信息
- 批准号:10544496
- 负责人:
- 金额:$ 51.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsArtificial IntelligenceBenignBig DataBiometryBiopsyBreastBreast Cancer DetectionCaliforniaCharacteristicsClinicalCodeCollaborationsCommunity PracticeComputer softwareComputersDNA Sequence AlterationDataData ScienceData SetData Storage and RetrievalDatabasesDiagnosisDiagnosticDigital Breast TomosynthesisDigital MammographyEquilibriumGoalsGrantHealthHumanImageImaging DeviceImaging technologyInstitutionInternationalLeadLinkMachine LearningMalignant NeoplasmsMammographic screeningMammographyMedicineMetadataMethodsModalityModelingMolecularNatureOncologyOutcomeOutputParticipantPathologyPerformancePopulationPositioning AttributePublicationsRadiology SpecialtyRandomized, Controlled TrialsRegistriesReverse engineeringRiskSeminalSeriesSupervisionTechniquesTechnology AssessmentTestingTimeTrainingTranslatingUniversitiesValidationWashingtonWomanalgorithm developmentalgorithmic methodologiesartificial intelligence algorithmaugmented intelligencebreast imagingclinical implementationclinical riskclinical translationclinically relevantclinically significantcloud basedcomputer aided detectioncrowdsourcingdeep learningdigitalexperiencegenetic risk factorimprovedindustry partnerinnovationlong short term memorymalignant breast neoplasmmolecular subtypesmortalitymultidisciplinarynovelnovel strategiespatient populationpopulation basedprospectiveradiologistroutine screeningscreeningtooltumor
项目摘要
PROJECT SUMMARY
Screening mammography saves lives but human interpretation alone is imperfect and is associated with
significant harms including ~30,000 missed breast cancers and ~3.8 million false-positives exams each year
in the U.S. alone. Traditional computer-aided detection failed to improve screening accuracy, in part due to
the static nature of software trained and tested on small datasets decades ago. Recent advances in improved
computer processing power, cloud-based data storage capabilities, and availability of large imaging datasets
have led to renewed excitement for applying artificial intelligence (AI) to mammography interpretation.
We propose a unique academic-industry partnership to validate, refine, scale, and clinically translate our
proven 2D mammography AI algorithm to 3D mammography interpretation. Our team helped organize and
lead the Dialogue for Reverse Engineering Assessments and Methods (DREAM) Digital Mammography
Challenge, an open crowdsourced AI algorithmic challenge that provided >640,000 digital 2D mammogram
images and associated clinical metadata to >1,200 coding teams worldwide. Our industry partner for this
grant, DeepHealth, Inc., was the top performing team in the DREAM Challenge. With >50% of U.S. facilities
now offering 3D mammography for screening, the 50-to-100-fold increase in imaging data represents a new
critical barrier for both radiologists and AI algorithm developers. To date, there have been few publications
addressing AI-enhanced interpretation of 3D mammography, the emerging screening exam of choice.
We will validate our post-DREAM algorithm for 2D mammography (which currently rivals human interpretation
alone) using UCLA's Athena Breast Health Network, one of the largest population-based breast imaging
registries. We will enhance our 2D AI algorithm with expert radiologist supervision and examine the impact of
adding novel non-imaging data parameters, including genetic mutation and tumor molecular subtype data, to
help train the AI model to identify more clinically significant cancers. We will use several novel technical
algorithmic approaches to scale from 2D to 3D mammography which, in our preliminary studies, have shown
improved accuracy beyond radiologist interpretation alone. Finally, we will perform a series of interpretive
studies to identify the optimal interface between “black box” outputs and radiologist interpreters, which
remains an understudied topic. With >40 million U.S. women undergoing screening each year, seemingly
small improvements in overall accuracy would still imply significantly improved population-based outcomes.
In summary, we have assembled an unparalleled multidisciplinary team with expertise in machine/deep
learning, breast cancer screening accuracy, medicine, oncology, radiology, imaging technology assessment,
and biostatistics. We have a proven track record of strong collaboration and are well positioned to validate,
enhance, scale, and translate our proven 2D AI algorithm for improved 3D mammography accuracy. Our new
end user tool will help tip the balance of routine screening towards greater benefits than harms.
项目摘要
筛查乳房X光检查可以挽救生命,但仅凭人类的解释是不完美的,
重大危害,包括每年约30,000例乳腺癌漏诊和约380万例假阳性检查
仅在美国。传统的计算机辅助检测未能提高筛查精度,部分原因是
几十年前在小数据集上训练和测试的软件的静态性质。改进的最新进展
计算机处理能力、基于云的数据存储能力和大型成像数据集的可用性
将人工智能(AI)应用于乳房X光检查解释,引发了新的兴奋。
我们提出了一个独特的学术-行业合作伙伴关系,以验证,完善,规模和临床转化我们的
经过验证的2D乳腺X线摄影AI算法到3D乳腺X线摄影解释。我们的团队帮助组织和
领导逆向工程评估和方法对话(DREAM)数字乳腺X射线摄影
Challenge,一个开放的众包AI算法挑战赛,提供了超过640,000张数字2D乳房X光照片
图像和相关的临床元数据提供给全球超过1,200个编码团队。我们的行业合作伙伴
grant,DeepHealth,Inc.,是梦幻挑战赛中表现最好的队伍拥有超过50%的美国工厂
现在提供3D乳房X光检查筛查,成像数据增加了50到100倍,这代表了一种新的
放射科医生和人工智能算法开发人员的关键障碍。迄今为止,
解决人工智能增强的3D乳腺X射线摄影解释,新兴的筛选检查的选择。
我们将验证我们的后梦想算法的2D乳腺X射线摄影(目前竞争对手的人类解释
单独)使用加州大学洛杉矶分校的雅典娜乳房健康网络,最大的人口为基础的乳房成像之一
登记处。我们将在放射科专家的监督下增强我们的2D AI算法,并检查
增加新的非成像数据参数,包括基因突变和肿瘤分子亚型数据,
帮助训练人工智能模型,以识别更多临床上重要的癌症。我们将使用几种新的技术
从2D到3D乳腺X射线摄影的算法方法,在我们的初步研究中,
提高了准确性,超出了放射科医生的解释。最后,我们将执行一系列解释性的
研究旨在确定“黑匣子”输出和放射科医生口译员之间的最佳接口,
仍然是一个未充分研究的话题。每年有超过4000万美国女性接受筛查,
总体准确性的微小改进仍意味着基于人口的结果得到显著改善。
总之,我们组建了一支无与伦比的多学科团队,拥有机器/深加工方面的专业知识,
学习,乳腺癌筛查准确性,医学,肿瘤学,放射学,成像技术评估,
和生物统计学。我们有着良好的合作记录,并有能力验证,
增强、缩放和转换我们经过验证的2D AI算法,以提高3D乳腺X射线摄影的准确性。我们的新
最终用户工具将有助于平衡常规筛查,使其利大于弊。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRISTOPH I LEE其他文献
CHRISTOPH I LEE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRISTOPH I LEE', 18)}}的其他基金
Population-Based Evaluation of Artificial Intelligence for Mammography Prior to Widespread Clinical Translation
在广泛临床转化之前对乳腺 X 线摄影人工智能进行基于人群的评估
- 批准号:
10651842 - 财政年份:2022
- 资助金额:
$ 51.77万 - 项目类别:
Population-Based Evaluation of Artificial Intelligence for Mammography Prior to Widespread Clinical Translation
在广泛临床转化之前对乳腺 X 线摄影人工智能进行基于人群的评估
- 批准号:
10445206 - 财政年份:2022
- 资助金额:
$ 51.77万 - 项目类别:
Racial and Socioeconomic Disparities in Breast Cancer Diagnostic Work Up and Outcomes
乳腺癌诊断工作和结果的种族和社会经济差异
- 批准号:
10394189 - 财政年份:2021
- 资助金额:
$ 51.77万 - 项目类别:
Racial and Socioeconomic Disparities in Breast Cancer Diagnostic Work Up and Outcomes
乳腺癌诊断工作和结果的种族和社会经济差异
- 批准号:
10094564 - 财政年份:2021
- 资助金额:
$ 51.77万 - 项目类别:
Racial and Socioeconomic Disparities in Breast Cancer Diagnostic Work Up and Outcomes
乳腺癌诊断工作和结果的种族和社会经济差异
- 批准号:
10654528 - 财政年份:2021
- 资助金额:
$ 51.77万 - 项目类别:
Artificial Intelligence for Improved Breast Cancer Screening Accuracy: External Validation, Refinement, and Clinical Translation
人工智能提高乳腺癌筛查准确性:外部验证、细化和临床转化
- 批准号:
10320906 - 财政年份:2020
- 资助金额:
$ 51.77万 - 项目类别:
Artificial Intelligence for Improved Breast Cancer Screening Accuracy: External Validation, Refinement, and Clinical Translation
人工智能提高乳腺癌筛查准确性:外部验证、细化和临床转化
- 批准号:
9912472 - 财政年份:2020
- 资助金额:
$ 51.77万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 51.77万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 51.77万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 51.77万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 51.77万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 51.77万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 51.77万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 51.77万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 51.77万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 51.77万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 51.77万 - 项目类别:
Research Grant