A chromatin-based timer controlling T-cell development
基于染色质的定时器控制 T 细胞发育
基本信息
- 批准号:10545047
- 负责人:
- 金额:$ 38.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAllelesBindingBiological AssayBiologyBloodCell Differentiation processCell LineageCellsChemicalsChromatinCollaborationsColorDevelopmentDevelopmental GeneDevelopmental ProcessDiseaseEnhancersEnvironmentEnzymesEpigenetic ProcessEtiologyEventExcisionGene ActivationGene ExpressionGenesGenomeGoalsHematopoietic stem cellsHistone H3HomeostasisIn VitroLysineMalignant - descriptorMalignant NeoplasmsMeasuresMethodsMethylationModelingModificationMusMutationNucleic Acid Regulatory SequencesOncogenicPeptide Initiation FactorsPolycombProcessProteinsRegulationRegulator GenesReporterRepressionRoleSignal TransductionSpecific qualifier valueSystemT-Cell DevelopmentT-LymphocyteTCF Transcription FactorTestingThymus GlandTimeUntranslated RNAVisualizationWorkcancer typecell typecellular developmentderepressiongain of function mutationgenomic locushistone modificationinsightleukemiamouse modelnotch proteinprogenitorrecruitresponsestemstem cellstooltranscription factortumorigenesis
项目摘要
PROJECT SUMMARY
During multicellular development, cells establish and maintain stable identities by activating lineage-specifying
genes. Epigenetic mechanisms, involving the polycomb repressive system and its associated histone H3
lysine 27 tri-methylation (H3K27me3) modification, are critical for proper cell lineage specification, and are
frequently disrupted in cancer; however, despite much work in many systems, it remains unclear how exactly
these histone modifications control gene expression, and how their disruption drives malignancy. These
questions remain unanswered, because we lack methods to follow epigenetic processes in living cells. We
recently developed a reporter system to analyze epigenetic control in the activation of Bcl11b, an essential
transcription factor for T-cell lineage commitment. To definitively test whether Bcl11b activation is controlled by
cis-epigenetic mechanisms acting at single loci, we generated a mouse, where two Bcl11b loci are tagged with
different fluorescent proteins (Ng et al. 2018). By following progenitors from these mice, we found that two
Bcl11b alleles turn on independently in the same cell, with one allele often turning on multiple days before
another. This work demonstrates that an epigenetic switch, acting independently on two Bcl11b loci, regulates
the dynamics of gene activation and T-cell commitment. Here, in this proposal, we seek to elucidate the
epigenetic mechanism controlling this lineage commitment switch, and determine impact of its disruption for
leukemia initiation. We will test the hypothesis that repressive H3K27me3 modifications uphold a key control
point for Bcl11b activation, and that disrupting this process can delay lineage commitment and drive leukemia.
To do so, we will first define the role for H3K27me3 loss in controlling Bcl11b activation (Aim 1). To do so, we
will perturb H3K27me3 modifications on the Bcl11b locus, and measure effects on locus activation dynamics.
In these assays, the dual-color Bcl11b reporter strain provides a powerful tool to visualize control by epigenetic
mechanisms in living cells. Next, we will determine how transcription factors work initiate H3K27me3 loss and
gene activation (Aim 2). To do so, we will perturb candidate TFs and cis-regulatory regions on the Bcl11b
locus, and determine resultant effects on H3K27me3 states and gene expression. Finally, we will determine
whether delays in differentiation, caused by disruptions of epigenetic mechanisms, drive leukemia initiation
(Aim 3). To do so, we will determine whether delayed Bcl11b activation slows down the pace of T-cell
development, and whether this developmental slowdown can accelerate the onset of T-ALL in a mouse model.
As polycomb mechanisms operate in diverse mammalian developmental processes, and because disruption of
these mechanisms may be a major driver of malignancy, our findings could broadly impact diverse fields.
项目摘要
在多细胞发育过程中,细胞通过激活谱系特异性来建立和维持稳定的身份。
基因.表观遗传机制,涉及polycomb抑制系统及其相关的组蛋白H3
赖氨酸27三甲基化(H3 K27 me 3)修饰对于适当的细胞谱系特化至关重要,
在癌症中经常被破坏;然而,尽管在许多系统中进行了大量工作,但仍不清楚
这些组蛋白修饰控制基因表达,以及它们的破坏如何驱动恶性肿瘤。这些
问题仍然没有答案,因为我们缺乏跟踪活细胞中表观遗传过程的方法。我们
最近开发了一个报告系统,以分析表观遗传控制的激活Bcl 11b,一个重要的
T细胞谱系定型的转录因子。为了明确检测Bcl 11b激活是否受
作用于单个基因座的顺式表观遗传机制,我们产生了一只小鼠,其中两个Bcl 11b基因座被标记
不同的荧光蛋白(Ng et al. 2018)。通过跟踪这些小鼠的祖细胞,我们发现,
bcl 11b等位基因在同一细胞中独立开启,一个等位基因通常在多天前开启。
另这项工作表明,一个表观遗传开关,独立作用于两个Bcl 11b基因座,
基因激活和T细胞定型的动力学。在此,在本提案中,我们寻求阐明
表观遗传机制控制这种谱系承诺开关,并确定其中断的影响,
白血病启动。我们将检验抑制性H3 K27 me 3修饰维持关键控制的假设,
Bcl 11b激活的点,破坏这一过程可以延迟谱系承诺并驱动白血病。
为此,我们将首先定义H3 K27 me 3丢失在控制Bcl 11b激活中的作用(目标1)。为此,我们
将扰乱Bcl 11b基因座上的H3 K27 me 3修饰,并测量对基因座激活动力学的影响。
在这些检测中,双色Bcl 11b报告菌株提供了一个强大的工具,通过表观遗传控制可视化
活细胞中的机制。接下来,我们将确定转录因子如何启动H3 K27 me 3丢失,
基因激活(Aim 2)。为此,我们将干扰Bcl 11b上的候选TF和顺式调节区域,
基因座,并确定对H3 K27 me 3状态和基因表达的结果影响。最后,我们将确定
表观遗传机制的破坏引起的分化延迟是否驱动白血病的发生
(Aim 3)。为此,我们将确定延迟的Bcl 11b激活是否会减缓T细胞增殖的速度。
发育,以及这种发育放缓是否会加速小鼠模型中T-ALL的发作。
由于多梳机制在不同的哺乳动物发育过程中起作用,
这些机制可能是恶性肿瘤的主要驱动因素,我们的发现可能会广泛影响各个领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hao Yuan Kueh其他文献
Hao Yuan Kueh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hao Yuan Kueh', 18)}}的其他基金
Clarifying the Origins of Blood Stem Cell Heterogeneity by Single-Cell Epigenetic State Profiling
通过单细胞表观遗传状态分析阐明血液干细胞异质性的起源
- 批准号:
10708977 - 财政年份:2022
- 资助金额:
$ 38.25万 - 项目类别:
Clarifying the Origins of Blood Stem Cell Heterogeneity by Single-Cell Epigenetic State Profiling
通过单细胞表观遗传状态分析阐明血液干细胞异质性的起源
- 批准号:
10701145 - 财政年份:2022
- 资助金额:
$ 38.25万 - 项目类别:
A chromatin-based timer controlling T-cell development
基于染色质的定时器控制 T 细胞发育
- 批准号:
10323024 - 财政年份:2020
- 资助金额:
$ 38.25万 - 项目类别:
A chromatin-based timer controlling T-cell development
基于染色质的定时器控制 T 细胞发育
- 批准号:
9883415 - 财政年份:2020
- 资助金额:
$ 38.25万 - 项目类别:
A chromatin-based timer controlling T-cell development
控制 T 细胞发育的基于染色质的计时器
- 批准号:
10077883 - 财政年份:2020
- 资助金额:
$ 38.25万 - 项目类别:
Single-cell analysis of immune cell fate decision making
免疫细胞命运决策的单细胞分析
- 批准号:
9335415 - 财政年份:2014
- 资助金额:
$ 38.25万 - 项目类别:
Single cell analysis of hematopoietic cell fate determination
造血细胞命运决定的单细胞分析
- 批准号:
8768311 - 财政年份:2014
- 资助金额:
$ 38.25万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 38.25万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 38.25万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 38.25万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 38.25万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 38.25万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 38.25万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 38.25万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 38.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 38.25万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 38.25万 - 项目类别:














{{item.name}}会员




