NRSA application: Characterizing acetylcholine, noradrenaline, and dopamine diffusion through the extracellular space in three subregions of macaque neocortex
NRSA 应用:表征猕猴新皮质三个分区中乙酰胆碱、去甲肾上腺素和多巴胺通过细胞外空间的扩散
基本信息
- 批准号:10568826
- 负责人:
- 金额:$ 7.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AcetylcholineAddressAffectAffinityAlgorithmsAnisotropyArchitectureAreaAttentionAuditory areaAxonBehaviorBiophysicsBrainBrain regionCellular MorphologyChemicalsCommunicationComputer ModelsDataDementiaDendritesDevelopmentDiagnosticDiffuseDiffusionDopamineExtracellular SpaceGeometryGoalsHumanHybridsIn VitroInterneuronsIschemiaLengthLinkLocationMacacaMeasuresMethodsModelingMolecularMonkeysMorphologyMotor CortexNational Research Service AwardsNeocortexNervous system structureNeurogliaNeuromodulatorNorepinephrineOutcomePorosityPrimatesProcessPropertyRodentRoleShapesSignal TransductionSignaling MoleculeSiteStratum GranulosumStrokeSynapsesSynaptic TransmissionSystemTestingTherapeuticTimeTissuesTravelUpdateWorkarea striatacell typecerebrospinal fluid flowdensityfallshuman datain silicoin vivomathematical modelmillimetermulti-scale modelingnanoscalenerve supplyneuronal cell bodyneuropathologyneuroregulationnonhuman primatenormal agingreceptorreceptor bindingrelating to nervous systemreuptakesimulationspatiotemporalsystem architecturetooltransmission processvirtual
项目摘要
PROJECT SUMMARY
Much work has been done to characterize the structural underpinnings of neuromodulatory systems and how
these architectural features shape neuromodulator action. Yet, although, neuromodulators primarily signal
through volume transmission which requires them to traverse the extracellular space (ECS) from release site to
target receptor, neuromodulatory diffusion through the ECS has received little attention. We know from
computational models that ECS diffusion is dependent on factors such as volume fraction, tissue tortuosity and
ECS geometry. Simulations so far have mainly focused on synaptic diffusion and synaptic spillover
mechanisms whereas neuromodulation functions at much larger spatiotemporal scales than that: even
neuromodulator diffusion through just layer IV in macaque cortex, for example, requires molecules to travel
distances up to 0.5 mm from release site to target receptor. Factors related to tissue porosity become
increasingly more important at such distances but current computer models like the common simulation engine
MCell are only equipped to study molecular diffusion at the nanometer scale. Consequently, we need updated
computational models capable of simulating the diffusion of neuromodulators across greater spatial and
temporal ranges capable of incorporating measures that become relevant at that macroscale. For this, I
propose to develop a hybrid model which will achieve this critical functionality by combining existing MCell
capabilities with large-scale algorithms from models of bulk diffusion. Because ECS diffusion is thought to vary
with brain regions which to date has not been systematically evaluated, I will then, with this multiscale model,
simulate diffusion of acetylcholine, noradrenaline, and dopamine across different regions of macaque cortex to
test how factors such as tissue granularity or tissue anisotropy affect common diffusion metrics (e.g.,
concentrations, diffusion rates, effective diffusion coefficients, and diffusion tensor). Since neuromodulatory
networks have been linked to virtually every brain function, understanding the dynamics of neuromodulator
diffusion across the brain is an important step in understanding normal brain function. Furthermore, because
changes in ECS dynamics and in neuromodulatory systems have been observed throughout development and
normal aging or with neuropathology like stroke-related ischemia and dementia, identifying key parameters that
determine signaling outcomes, but also the active processes by which they can be modified, may be key for
the advancement in diagnostics and therapeutics.
项目摘要
人们已经做了大量的工作来描述神经调节系统的结构基础,以及如何
这些结构特征形成神经调节剂的作用。然而,尽管神经调质主要发出信号,
通过体积传输,这需要它们从释放部位穿过细胞外空间(ECS),
靶受体,通过ECS的神经调节扩散很少受到关注。我们知道从
计算模型表明,ECS扩散取决于诸如体积分数、组织弯曲度和
ECS几何结构。迄今为止的模拟主要集中在突触扩散和突触溢出
然而,神经调节功能在更大的时空尺度上发挥作用:甚至
例如,在猕猴皮层中,神经调节剂仅通过第四层扩散,需要分子在
从释放位点到靶受体的距离最多为0.5 mm。与组织孔隙度相关的因素成为
在这样的距离上越来越重要,但目前的计算机模型,如通用模拟引擎,
MCell仅用于研究纳米尺度的分子扩散。因此,我们需要更新
计算模型能够模拟神经调质在更大空间和
能够纳入与宏观尺度相关的措施的时间范围。为此我
我建议开发一种混合模型,通过结合现有的MCell来实现这一关键功能
能力与大规模的算法从模型的散装扩散。因为ECS扩散被认为是变化的,
到目前为止还没有被系统评估的大脑区域,我将用这个多尺度模型,
模拟乙酰胆碱、去甲肾上腺素和多巴胺在猕猴皮层不同区域扩散,
测试诸如组织粒度或组织各向异性的因素如何影响常见的扩散度量(例如,
浓度、扩散速率、有效扩散系数和扩散张量)。由于神经调节
网络已经与几乎所有的大脑功能联系在一起,了解神经调质的动力学
在大脑中的扩散是理解正常大脑功能的重要一步。而且,因为
在整个发育过程中观察到ECS动力学和神经调节系统的变化,
正常衰老或神经病理学,如中风相关的缺血和痴呆,确定关键参数,
确定信号结果,以及可以修改它们的活动过程,可能是
诊断学和治疗学的进步
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juliane Krueger其他文献
Juliane Krueger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 7.62万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 7.62万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 7.62万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 7.62万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 7.62万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 7.62万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 7.62万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 7.62万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 7.62万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 7.62万 - 项目类别:
Research Grant














{{item.name}}会员




