Cancer Classifiers Based on RNA Sensors in Living Cells
基于活细胞中 RNA 传感器的癌症分类器
基本信息
- 批准号:10570559
- 负责人:
- 金额:$ 19.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAdenosineAffectBasic ScienceBindingBiological AssayBiomedical ResearchCancer ModelCancer cell lineCellsCollectionComplementDNADetectionDouble-Stranded RNAEngineeringEnzymesExhibitsFutureGenesGenetic TranscriptionGenetic VectorsGoalsGuanineHallmark CellHealth BenefitHumanImmuneImmune systemImmunologyIn VitroInosineInterventionLibrariesLogicMalignant NeoplasmsMammalian CellMedicineMessenger RNAMetaphorMethodsModificationMolecularMusMutationNamesNatureNeurosciencesNucleic AcidsOncolyticOncolytic virusesOrganismOrganoidsOutcomeOutputPathway interactionsPatientsPerformancePharmacologyProcessProteinsPublic HealthRNARNA EditingRNA VirusesReporterReportingSignal TransductionSpecificityTestingTherapeuticTranscriptTranslationsVariantVesicular stomatitis Indiana virusViralViral ProteinsViral VectorVirus DiseasesVirus Replicationadenosine deaminasebasecancer biomarkerscancer cellcancer therapycell typeclinically relevantconventional therapydelivery vehicledesigndesign-build-testdifferential expressionimprovedin vivomouse modeloncolytic virotherapyoperationoverexpressionprogramsresponsesenescencesensorsignal processingsingle-cell RNA sequencingtooltranscriptometranscriptomicsvectorvector vaccine
项目摘要
Abstract
There is a critical need for RNA sensors in living mammalian cells. With the advent of single-cell RNA
sequencing, the transcriptome of any cell type is readily obtainable if not already available. In contrast, we are
still in urgent need for a universal method to act on such transcriptomic information. If we can genetically express
arbitrary effector proteins in specific cell types according to their transcriptional markers, we would transform
large swaths of basic research and biomedical applications, such as immunology, neuroscience, and cancer
therapy. In addition, we would like such sensors to be programmable and operate at the post-transcription level.
One promising use case that would benefit from such sensors is cancer ablation, using an approach
dubbed “circuits as medicine”, where a genetic vector encoding an entire “circuit” (metaphor for a collection of
biomolecules engineered to regulate each other and implement specific functions) is delivered intracellularly.
The circuit will sense the cellular states based on hallmarks of cancer (i.e., the overexpression of specific RNAs
or the presence of specific mutations), process the signals, and deliver specific therapeutic payloads accordingly
in cancer cells, directly killing them while educating the immune system to search and destroy other cancer cells.
Previous efforts largely relied on strand displacement, a successful strategy for nucleic acid-based signal
processing outside cells. However, their functionality has remained inadequate inside living mammalian cells,
most likely because the double-stranded RNA (dsRNA) formed during strand displacement signals viral infection
and are actively engaged by mammalian proteins in the immune pathways. We hypothesize that, because it is
impossible to evade the omnipresent dsRNA-interacting proteins, it is wiser to embrace them. In this proposal,
we will leverage endogenous human enzymes that recognize and specifically edit dsRNA, to create sensors that
can be programmed to respond to arbitrary RNA transcripts (“triggers”).
First, we will use fast design-build-test cycles in vitro to optimize sensor performance. We will focus on
increasing sensor output in response to triggers by engineering the sensor configuration and its sequence choice,
and we will characterize how the sensor affects and is affected by the cellular context. Second, to enable the
quantitative distinction of different trigger levels and the integration of multiple triggers, we will engineer
threshold-setting modifications and AND logic gates. Third, leveraging the unique post-transcriptional nature of
such sensors and gates, we will combine them with mRNA or an oncolytic RNA virus as delivery vectors, which
has traditionally been difficult to control. Last by not least, we will validate the performance and the therapeutic
potential of the sensors, gates, and the RNA vectors in cancer cell lines.
The future directions of the proposed project include continual optimization of the sensors, logic gates,
and vectors, testing them in more realistic cancer models including mouse models and patient-derived organoids,
and applying the tools to other fields.
摘要
在活的哺乳动物细胞中存在对RNA传感器的迫切需要。随着单细胞RNA的出现
通过测序,任何细胞类型的转录组都是容易获得的,如果不是已经可用的话。相比之下,
仍然迫切需要一种通用方法来作用于这种转录组信息。如果我们能通过基因表达
根据其转录标记,在特定细胞类型中的任意效应蛋白,我们将转化
大量的基础研究和生物医学应用,如免疫学、神经科学和癌症
疗法此外,我们希望这种传感器是可编程的,并在转录后水平上运行。
受益于这种传感器的一个有希望的用例是癌症消融,使用一种方法
被称为“电路作为药物”,其中编码整个“电路”的遗传载体(比喻为一个集合,
被工程化以相互调节并实现特定功能的生物分子)在细胞内递送。
该电路将基于癌症的标志感测细胞状态(即,特定RNA的过度表达
或特定突变的存在),处理信号,并相应地递送特定的治疗有效载荷
在癌细胞中,直接杀死它们,同时训练免疫系统搜索和摧毁其他癌细胞。
以前的努力主要依赖于链置换,这是基于核酸的信号的成功策略
在细胞外进行处理。然而,它们的功能在活的哺乳动物细胞内仍然不足,
很可能是因为在链置换过程中形成的双链RNA(dsRNA)发出病毒感染的信号
并且在免疫途径中被哺乳动物蛋白积极参与。我们假设,因为它是
不可能回避无处不在的dsRNA相互作用蛋白,更明智的做法是接受它们。在这一提议中,
我们将利用能够识别和特异性编辑dsRNA的内源性人类酶来制造传感器,
可以被编程为对任意RNA转录物(“触发物”)做出反应。
首先,我们将在体外使用快速设计-构建-测试循环来优化传感器性能。我们将专注于
通过设计传感器配置及其序列选择来响应于触发而增加传感器输出,
我们将描述传感器如何影响细胞环境以及如何受细胞环境影响。第二,使
不同触发水平的定量区分和多个触发的集成,我们将设计
阈值设置修改和AND逻辑门。第三,利用转录后的独特性质,
我们将联合收割机与mRNA或溶瘤RNA病毒结合作为递送载体,
传统上是很难控制的最后,我们将验证性能和治疗效果,
传感器、门和RNA载体在癌细胞系中的潜力。
该项目的未来发展方向包括传感器、逻辑门、
和载体,在更现实的癌症模型中测试它们,包括小鼠模型和患者衍生的类器官,
并将这些工具应用到其他领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaojing J Gao其他文献
Xiaojing J Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaojing J Gao', 18)}}的其他基金
A Novel Class of Synthetic Receptors to Empower the Age of mRNA Therapies
一类新型合成受体将推动 mRNA 治疗时代的到来
- 批准号:
10687517 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Program the Immune System against RAS-driven Cancer
对免疫系统进行编程以对抗 RAS 驱动的癌症
- 批准号:
10612257 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Cancer Classifiers Based on RNA Sensors in Living Cells
基于活细胞中 RNA 传感器的癌症分类器
- 批准号:
10707194 - 财政年份:2022
- 资助金额:
$ 19.41万 - 项目类别:
Synthetic DNA-free Circuits for “Scarless” Programming of Mammalian Cells
用于哺乳动物细胞“无痕”编程的合成无 DNA 电路
- 批准号:
10115864 - 财政年份:2020
- 资助金额:
$ 19.41万 - 项目类别:
Synthetic DNA-free Circuits for “Scarless” Programming of Mammalian Cells
用于哺乳动物细胞“无痕”编程的合成无 DNA 电路
- 批准号:
10379933 - 财政年份:2020
- 资助金额:
$ 19.41万 - 项目类别:
相似国自然基金
基于ADK/Adenosine调控DNA甲基化探讨“利湿化瘀通络”法对2型糖尿病肾病足细胞裂孔膜损伤的干预机制研究
- 批准号:82074359
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
细胞外腺苷(Adenosine)作为干细胞旁分泌因子的生物学鉴定和功能分析
- 批准号:81570244
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
Adenosine诱导A1/A2AR稳态失衡启动慢性低灌注白质炎性损伤及其机制
- 批准号:81171113
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Targeting the A2B Adenosine Receptor for Immunoprevention of Pancreatic Cancer
靶向 A2B 腺苷受体用于胰腺癌的免疫预防
- 批准号:
10929664 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Exploring the role of adenosine A2A receptors in Schizophrenia using opto-pharmacologically controlled allosteric modulation.
利用光药理学控制的变构调节探索腺苷 A2A 受体在精神分裂症中的作用。
- 批准号:
23K14685 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Role of Adenosine Kinase in Mixed Diastolic Heart Failure and Alzheimer Disease
腺苷激酶在混合性舒张性心力衰竭和阿尔茨海默病中的作用
- 批准号:
10679989 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
- 批准号:
BB/W016974/1 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Research Grant
Investigation of new test methods for adenosine-sensitive atrioventricular block
腺苷敏感型房室传导阻滞新检测方法的探讨
- 批准号:
23K07566 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing the role of adenosine pathway in SIV pathogenesis
探讨腺苷途径在 SIV 发病机制中的作用
- 批准号:
10760676 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
The role of A1 adenosine receptor signaling in the decline of S. pneumoniae killing by neutrophils in vaccinated aged hosts
A1 腺苷受体信号传导在疫苗接种老年宿主中中性粒细胞杀伤肺炎链球菌下降中的作用
- 批准号:
10605737 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Adenosine triphosphate as a master variable for biomass in the oceanographic context
三磷酸腺苷作为海洋学背景下生物量的主变量
- 批准号:
2319114 - 财政年份:2023
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
The Biology of Microglia: Adenosine A3 Receptor Suppression
小胶质细胞的生物学:腺苷 A3 受体抑制
- 批准号:
RGPIN-2019-06289 - 财政年份:2022
- 资助金额:
$ 19.41万 - 项目类别:
Discovery Grants Program - Individual
Postnatal development of adenosine kinase in the brainstem network that controls breathing
控制呼吸的脑干网络中腺苷激酶的出生后发育
- 批准号:
573323-2022 - 财政年份:2022
- 资助金额:
$ 19.41万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




