A Novel Class of Synthetic Receptors to Empower the Age of mRNA Therapies

一类新型合成受体将推动 mRNA 治疗时代的到来

基本信息

  • 批准号:
    10687517
  • 负责人:
  • 金额:
    $ 135.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-19 至 2026-09-18
  • 项目状态:
    未结题

项目摘要

Abstract The COVID vaccination campaigns have highlighted the promise of mRNA-mediated delivery as a novel therapeutic modality. One particular application is adoptive cell therapy, where immune cells are equipped with novel functions to treat diseases, e.g., expressing chimeric antigen receptors (CARs) in T cells to ablate cancer and other undesirable cells. Compared to DNA-based engineering of immune cells, mRNA has several advantages as a delivery vector, especially its superior safety profile, because it eliminates the risk of randomly inserting into the host genome and causing mutations, and its short half-life mitigates long-term adverse effects due to the persistence of the engineered cellular function. Instead of extracting cells from the patient, engineering them ex vivo, and then reinducing them, researchers have even directly delivered CAR-encoding mRNAs and created functional CAR T cells in vivo. This is appealing because it has the potential to make adoptive cell therapy accessible to the general public, its logistics almost as straightforward as manufacturing, distributing, and administering vaccine shots, in contrast to the costly ex vivo engineering process that will be limited to the privileged few. Despite the great potential of mRNA-mediated adoptive cell therapy, there remains a critical need for tools that enhance targeting precision. It is very rare for a single surface marker, targeted by CAR, to unambiguously identify one target cell population. Therefore, “on-target/off-caner” killing is a major concern for CAR T cell therapies against cancer, and the same concern also applies to scenarios of ablating other cells, such as active fibroblasts in heart infarction or senescent cells. One elegant solution is synthetic receptors, most notably synthetic Notch, that detect a second marker and express CAR in response, effectively forming AND logic, where target cells are only killed when both inputs to the synthetic receptor and CAR are present. However, to our knowledge, all existing synthetic modular, programmable receptors operate at the DNA level, and are therefore incompatible with mRNA-mediated delivery. Here we design and demonstrate the feasibility of a first-in-class synthetic modular receptor that operate at the RNA level. It converts ligand-induced dimerization events into the expression of arbitrary output proteins. Through extensive computational simulation and experimental optimization, we will expand the input/output repertoire of this receptor, establish its design principle, enable its encoding on single transcripts and delivery by mRNA, and take first steps towards improving the precision of ablating active fibroblasts to treat heart infarction. The impact of such novel receptors is beyond adoptive cell therapy. For example, they can facilitate basic research by recording cells’ (e.g., neurons) exposure to specific signals (e.g., dopamine). They will benefit a variety of other biomedical applications too, from expressing antigens or cytokines in response to extracellular cues to enhance vaccine efficacy, to generating novel sense-and-respond capabilities for tissue engineering.
摘要 COVID疫苗接种活动强调了mRNA介导的递送作为一种新的 治疗方式一个特别的应用是过继细胞疗法,其中免疫细胞配备有 治疗疾病的新功能,例如,在T细胞中表达嵌合抗原受体(汽车)以消除癌症 和其它不需要的细胞。与基于DNA的免疫细胞工程相比,mRNA具有几个优点, 作为递送载体的优点,特别是其上级安全性,因为它消除了随机 插入宿主基因组并引起突变,其短半衰期减轻了长期不良影响 这是由于工程化细胞功能的持久性。不是从病人身上提取细胞, 他们离体,然后重新诱导他们,研究人员甚至直接交付CAR编码mRNA, 在体内产生功能性CAR T细胞。这很有吸引力,因为它有可能使过继细胞 治疗向公众开放,其物流几乎像制造,分销, 和给予疫苗注射,与昂贵的离体工程过程相反, 少数特权 尽管mRNA介导的过继细胞疗法具有巨大的潜力,但仍然迫切需要 提高目标精确度的工具。对于CAR靶向的单一表面标记物, 明确识别一个靶细胞群体。因此,“目标/非癌症”杀伤是一个主要问题, CAR-T细胞治疗癌症,同样的问题也适用于消融其他细胞的情况, 例如心肌梗塞中的活性成纤维细胞或衰老细胞。一个优雅的解决方案是合成受体, 特别是合成Notch,其检测第二标记物并作为应答表达CAR,有效地形成AND 逻辑,其中靶细胞仅在合成受体和CAR的输入都存在时才被杀死。然而,在这方面, 据我们所知,所有现有的合成模块化可编程受体都在DNA水平上运作, 因此与mRNA介导的递送不相容。 在这里,我们设计并证明了一流的合成模块化受体的可行性, 在RNA水平上。它将配体诱导的二聚化事件转化为任意输出蛋白的表达。 通过大量的计算模拟和实验优化,我们将扩大输入/输出 该受体的所有组成部分,建立其设计原则,使其能够在单个转录本上编码并通过 mRNA,并朝着提高消融活性成纤维细胞以治疗心脏梗死的精度迈出第一步。 这种新型受体的影响超出了过继细胞治疗。例如,它们可以促进基本的 通过记录细胞的研究(例如,神经元)暴露于特定信号(例如,多巴胺)。他们将受益于A 许多其他生物医学应用,从表达抗原或细胞因子,以响应细胞外 提高疫苗效力的线索,为组织工程产生新的感知和反应能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaojing J Gao其他文献

Xiaojing J Gao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaojing J Gao', 18)}}的其他基金

Program the Immune System against RAS-driven Cancer
对免疫系统进行编程以对抗 RAS 驱动的癌症
  • 批准号:
    10612257
  • 财政年份:
    2023
  • 资助金额:
    $ 135.08万
  • 项目类别:
Cancer Classifiers Based on RNA Sensors in Living Cells
基于活细胞中 RNA 传感器的癌症分类器
  • 批准号:
    10570559
  • 财政年份:
    2022
  • 资助金额:
    $ 135.08万
  • 项目类别:
Cancer Classifiers Based on RNA Sensors in Living Cells
基于活细胞中 RNA 传感器的癌症分类器
  • 批准号:
    10707194
  • 财政年份:
    2022
  • 资助金额:
    $ 135.08万
  • 项目类别:
Synthetic DNA-free Circuits for “Scarless” Programming of Mammalian Cells
用于哺乳动物细胞“无痕”编程的合成无 DNA 电路
  • 批准号:
    10115864
  • 财政年份:
    2020
  • 资助金额:
    $ 135.08万
  • 项目类别:
Synthetic DNA-free Circuits for “Scarless” Programming of Mammalian Cells
用于哺乳动物细胞“无痕”编程的合成无 DNA 电路
  • 批准号:
    10379933
  • 财政年份:
    2020
  • 资助金额:
    $ 135.08万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了