I-Corps: Optical design and the development of high accuracy automated tick classification using computer vision
I-Corps:使用计算机视觉进行光学设计和高精度自动蜱分类的开发
基本信息
- 批准号:10561399
- 负责人:
- 金额:$ 5.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-18 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AreaClassificationComputer Vision SystemsDevelopmentDiseaseGeneral PopulationGoalsImageIncidenceInnovation CorpsMonitorOpticsPhaseProphylactic treatmentPublic HealthSmall Business Innovation Research GrantSpatial DistributionStandardizationSystemTechnologyTick-Borne DiseasesTicksUnited States National Institutes of HealthVaccinesclinical decision-makingdesigndisorder preventionhigh riskimprovedinsighttick bitevector controlvector tick
项目摘要
Abstract
The incidence of US tick-borne diseases has more than doubled in the last two decades. Due to
lack of effective vaccines for tick-borne diseases, prevention of tick bites remains the primary
focus of disease mitigation. Tick vector surveillance - monitoring an area to understand tick
species composition, abundance, and spatial distribution - is key to providing the public with
accurate and up-to-date information when they are in areas of high risk, and enabling precision
vector control when necessary. Vectech is an NIH SBIR phase I awardee seeking to develop the
first automated imaging and identification system capable of instantaneously and accurately
identifying the top nine tick vectors in the US. The approach of standardized optical design and
development of a computer vision system offers several advantages over conventional
acarologist identification. This NIH I-Corps project seeks to improve understanding of tick
surveillance needs in the US. The proposed I-Corps team will focus on the commercial
opportunity to improve clinical decision making for administration of tick bite prophylaxis and
enhancing public health information for vector control organizations and the general public. The
resulting insights will be incorporated into Vectech’s future research with the aim of bringing a
commercial product to market.
摘要
在过去的二十年里,美国蜱传疾病的发病率增加了一倍多。由于
由于缺乏有效的蜱传疾病疫苗,预防蜱叮咬仍然是主要的
减轻疾病的重点。蜱虫媒介监测-监测一个区域以了解蜱虫
物种组成,丰度和空间分布-是向公众提供
在高风险地区提供准确和最新的信息,
必要时进行病媒控制。Vectech是NIH SBIR第一阶段获奖者,寻求开发
第一个自动成像和识别系统,
找出美国排名前九的蜱虫媒介介绍了标准化光学设计方法,
计算机视觉系统的发展提供了几个优于传统视觉系统的优点。
螨学鉴定这个NIH I-Corps项目旨在提高对蜱虫的理解
美国的监控需求。拟议中的I-Corps团队将专注于商业
有机会改善蜱叮咬预防管理的临床决策,
加强向病媒控制组织和公众提供的公共卫生信息。的
由此产生的见解将被纳入Vectech的未来研究,目的是带来一个
商业产品推向市场。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Autumn Goodwin其他文献
Autumn Goodwin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Autumn Goodwin', 18)}}的其他基金
High accuracy automated tick classification using computer vision
使用计算机视觉进行高精度自动蜱分类
- 批准号:
10699845 - 财政年份:2022
- 资助金额:
$ 5.5万 - 项目类别:
Optical design and the development of high accuracy automated tick classification using computer vision
使用计算机视觉进行光学设计和高精度自动蜱分类的开发
- 批准号:
10325667 - 财政年份:2021
- 资助金额:
$ 5.5万 - 项目类别:
相似海外基金
Developing a Census Based Generative Geodemographic Classification System
开发基于人口普查的生成地理人口分类系统
- 批准号:
ES/Z50273X/1 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Research Grant
Postdoctoral Fellowship: EAR-PF: Establishing a new eruption classification with a multimethod approach
博士后奖学金:EAR-PF:用多种方法建立新的喷发分类
- 批准号:
2305462 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Fellowship Award
Classification of contemporary Kansai dialects
当代关西方言的分类
- 批准号:
24K03842 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y000455/1 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
- 批准号:
BB/Y001117/1 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Research Grant
From single-cell transcriptomic to single-cell fluxomic: characterising metabolic dysregulations for breast cancer subtype classification
从单细胞转录组到单细胞通量组:表征乳腺癌亚型分类的代谢失调
- 批准号:
EP/Y001613/1 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Research Grant
Enhanced X-ray material classification using SiPMs and fast scintillators
使用 SiPM 和快速闪烁体增强 X 射线材料分类
- 批准号:
2905969 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Studentship
Particle classification and identification in cryoET of crowded cellular environments
拥挤细胞环境中 CryoET 中的颗粒分类和识别
- 批准号:
BB/Y514007/1 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Research Grant
EAGER: IMPRESS-U: Exploratory Research in Robust Machine Learning for Object Detection and Classification
EAGER:IMPRESS-U:用于对象检测和分类的鲁棒机器学习的探索性研究
- 批准号:
2415299 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
OAC Core: Enhancing Network Security by Implementing an ML Malware Detection and Classification Scheme in P4 Programmable Data Planes and SmartNICs
OAC 核心:通过在 P4 可编程数据平面和智能网卡中实施 ML 恶意软件检测和分类方案来增强网络安全
- 批准号:
2403360 - 财政年份:2024
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant