Real-time deep learning to improve speech intelligibility in noise
实时深度学习提高噪声中的语音清晰度
基本信息
- 批准号:10558196
- 负责人:
- 金额:$ 0.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmericanAreaAuditoryCellular PhoneCharacteristicsCochlear ImplantsCommunicationComplexDataDevicesDiagnosisEconomic BurdenEffectivenessEnvironmentEquilibriumEtiologyFacultyFellowshipFloorFoundationsFutureGoalsHealthcareHearingHearing AidsHumanImplantMeasuresMentorsMissionNational Institute on Deafness and Other Communication DisordersNoisePerformancePhasePreventionProcessQuality of lifeRecommendationResearchResearch PersonnelResearch TrainingSchemeSeminalSignal TransductionSpeechSpeech IntelligibilityStrategic PlanningSystemTelephoneTestingTimeTrainingTranslatingUniversitiesVideoconferencingWorkartificial neural networkbasecareercommunication devicedeep learningdeep neural networkdesignexperimental studyhealth economicshearing impairmenthearing loss treatmentimprovedmicrophonenetwork architectureneural networknormal hearingnovelnovel strategiesoperationskillsspeech in noisewearable device
项目摘要
Project Summary/Abstract
One in eight Americans has hearing loss, and this constitutes a major health and economic burden
(Blackwell et al., 2014). The primary complaint of hearing-impaired (HI) listeners is difficulty understanding
speech when background noise is present (see Dillon, 2012). While hearing aids (HAs) have improved in
recent years, they still provide little benefit in noisy environments. For decades, a means of improving the
ability to understand speech in background noise appeared unattainable, despite substantial amounts of
research by both universities and HA companies. This changed when deep learning provided the first
demonstration of a single-microphone algorithm that improves intelligibly in noise for HI listeners (Healy et al.,
2013, 2014, 2015). Although this algorithm provides massive intelligibility improvements (even allowing
listeners to improve intelligibility from floor to ceiling levels), it is currently not implemented to operate in real
time and is therefore not suitable for implementation into HAs and cochlear implants (CIs). What is needed,
therefore, is a highly effective noise-reduction algorithm that is capable of operating in real time. This project
aims to address this critical need.
The long-term goal of the currently proposed project is to alleviate HI listeners’ predominant hearing
handicap, which is difficulty understanding speech in background noise. The first aim introduces a new
algorithm, based on a novel foundational scheme, that is designed to provide substantial benefit for any HI
listener in real time. This algorithm will be well suited for implementation into HAs, CIs, and other face-to-face
communication applications. The effectiveness of this new algorithm will be quantified using both HI and
normal-hearing (NH) listeners. The second aim expands upon this new algorithm by modifying it to accept a
small amount of future time-frame information, which could improve its noise-reduction performance but will
introduce a brief processing delay. The rationale is that different devices have different allowable latencies.
Face-to-face communication devices (HAs, CIs, etc.) have strict low-latency requirements, but other important
communication systems (e.g., telephones) have different requirements. It is possible that the addition of future
time-frame information within these requirements (up to 150 ms) will result in even better speech intelligibility.
But the magnitude of any potential benefit is unknown. This critical information will be established currently.
Using both HI and NH listeners, we will measure intelligibility for noisy sentences that have been processed
using various amounts of future time information.
This comprehensive fellowship training plan will provide individualized, mentored research training from
world-class faculty in a highly supportive and productive environment. The proposed work will endow the
applicant with the skills needed to transition to the next stage of his research career, transform our treatment of
hearing loss, and substantially impact quality of life for millions of Americans.
项目总结/摘要
八分之一的美国人有听力损失,这构成了主要的健康和经济负担
(Blackwell等人,2014年)。听障听众的主要抱怨是难以理解
当存在背景噪声时的语音(参见Dillon,2012)。助听器(HAs)的发展
近年来,它们在嘈杂的环境中仍然没有什么好处。几十年来,一种改善
在背景噪音中理解语音的能力似乎是无法达到的,尽管有大量的
大学和HA公司的研究。当深度学习提供了第一个
演示了单麦克风算法,其改善了HI收听者的噪声的可理解性(Healy等人,
2013年,2014年,2015年)。尽管该算法提供了大量的可理解性改进(甚至允许
收听者以提高从地板到天花板水平的可懂度),但是目前还没有实现在真实的环境中操作
因此不适合在HA和人工耳蜗(CI)中实施。所需要的,
因此是一种能够在真实的时间内操作的高效降噪算法。这个项目
旨在满足这一关键需求。
目前建议的计划的长远目的,是减轻听障人士的听觉负担
障碍,即在背景噪音中难以理解语音。第一个目标介绍了一个新的
算法,基于一种新的基础方案,旨在为任何HI提供实质性的好处
真实的听众。该算法将非常适合于在HA、CI和其他面对面
通信应用。这种新算法的有效性将使用HI和
听力正常(NH)的听众。第二个目标扩展了这个新的算法,修改它接受一个
少量的未来时间帧信息,这可以提高其降噪性能,但将
引入短暂的处理延迟。其基本原理是不同器械具有不同的允许延迟。
面对面通信设备(HA、CI等)有严格的低延迟要求,但其他重要的
通信系统(例如,电话)有不同的要求。未来可能会增加
在这些要求(高达150 ms)内的时间帧信息将导致甚至更好的语音清晰度。
但任何潜在好处的大小都是未知的。这一关键信息将在目前得到确定。
使用HI和NH监听器,我们将测量经过处理的嘈杂句子的可懂度
使用不同数量的未来时间信息。
这项全面的研究金培训计划将提供个性化的,指导性的研究培训,
世界一流的教师在一个高度支持和富有成效的环境。拟议的工作将赋予
申请人具有过渡到他的研究生涯的下一阶段所需的技能,改变我们的治疗方法,
听力损失,并严重影响数百万美国人的生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Martin Johnson其他文献
Eric Martin Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Martin Johnson', 18)}}的其他基金
Real-time deep learning to improve speech intelligibility in noise
实时深度学习提高噪声中的语音清晰度
- 批准号:
10268203 - 财政年份:2020
- 资助金额:
$ 0.25万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Continuing Grant