Real-time deep learning to improve speech intelligibility in noise
实时深度学习提高噪声中的语音清晰度
基本信息
- 批准号:10268203
- 负责人:
- 金额:$ 7.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmericanAreaAuditoryCellular PhoneCharacteristicsCochlear ImplantsCommunicationComplexDataDevicesDiagnosisEconomic BurdenEffectivenessEnvironmentEquilibriumEtiologyFacultyFellowshipFloorFoundationsFutureGoalsHealthcareHearingHearing AidsHumanImplantMeasuresMentorsMissionNational Institute on Deafness and Other Communication DisordersNoisePerformancePhasePreventionProcessQuality of lifeRecommendationResearchResearch PersonnelResearch TrainingSchemeSeminalSignal TransductionSpeechSpeech IntelligibilityStrategic PlanningSystemTelephoneTestingTimeTrainingTranslatingUniversitiesVideoconferencingWorkartificial neural networkbasecareercommunication devicedeep learningdeep neural networkdesignexperimental studyhealth economicshearing impairmenthearing loss treatmentimprovedmicrophonenetwork architectureneural networknormal hearingnovelnovel strategiesoperationskillsspeech in noisewearable device
项目摘要
Project Summary/Abstract
One in eight Americans has hearing loss, and this constitutes a major health and economic burden
(Blackwell et al., 2014). The primary complaint of hearing-impaired (HI) listeners is difficulty understanding
speech when background noise is present (see Dillon, 2012). While hearing aids (HAs) have improved in
recent years, they still provide little benefit in noisy environments. For decades, a means of improving the
ability to understand speech in background noise appeared unattainable, despite substantial amounts of
research by both universities and HA companies. This changed when deep learning provided the first
demonstration of a single-microphone algorithm that improves intelligibly in noise for HI listeners (Healy et al.,
2013, 2014, 2015). Although this algorithm provides massive intelligibility improvements (even allowing
listeners to improve intelligibility from floor to ceiling levels), it is currently not implemented to operate in real
time and is therefore not suitable for implementation into HAs and cochlear implants (CIs). What is needed,
therefore, is a highly effective noise-reduction algorithm that is capable of operating in real time. This project
aims to address this critical need.
The long-term goal of the currently proposed project is to alleviate HI listeners’ predominant hearing
handicap, which is difficulty understanding speech in background noise. The first aim introduces a new
algorithm, based on a novel foundational scheme, that is designed to provide substantial benefit for any HI
listener in real time. This algorithm will be well suited for implementation into HAs, CIs, and other face-to-face
communication applications. The effectiveness of this new algorithm will be quantified using both HI and
normal-hearing (NH) listeners. The second aim expands upon this new algorithm by modifying it to accept a
small amount of future time-frame information, which could improve its noise-reduction performance but will
introduce a brief processing delay. The rationale is that different devices have different allowable latencies.
Face-to-face communication devices (HAs, CIs, etc.) have strict low-latency requirements, but other important
communication systems (e.g., telephones) have different requirements. It is possible that the addition of future
time-frame information within these requirements (up to 150 ms) will result in even better speech intelligibility.
But the magnitude of any potential benefit is unknown. This critical information will be established currently.
Using both HI and NH listeners, we will measure intelligibility for noisy sentences that have been processed
using various amounts of future time information.
This comprehensive fellowship training plan will provide individualized, mentored research training from
world-class faculty in a highly supportive and productive environment. The proposed work will endow the
applicant with the skills needed to transition to the next stage of his research career, transform our treatment of
hearing loss, and substantially impact quality of life for millions of Americans.
项目概要/摘要
八分之一的美国人有听力损失,这构成了重大的健康和经济负担
(布莱克威尔等人,2014)。听障 (HI) 听众的主要抱怨是理解困难
存在背景噪声时的语音(参见 Dillon,2012)。虽然助听器 (HA) 在以下方面有所改进:
近年来,它们在嘈杂的环境中仍然提供很少的好处。几十年来,一种改善
尽管有大量的声音,但在背景噪音中理解语音的能力似乎无法实现
大学和 HA 公司的研究。当深度学习提供第一个解决方案时,情况发生了变化
演示单麦克风算法,该算法可明显改善 HI 听众的噪音(Healy 等人,
2013 年、2014 年、2015 年)。尽管该算法提供了巨大的清晰度改进(甚至允许
听众以提高从地板到天花板水平的清晰度),目前尚未实现实际操作
时间,因此不适合实施到 HA 和人工耳蜗 (CI) 中。需要什么,
因此,是一种能够实时运行的高效降噪算法。这个项目
旨在解决这一关键需求。
当前提议项目的长期目标是减轻 HI 听众的主要听力
障碍,即难以理解背景噪音中的语音。第一个目标引入了一个新的
算法,基于一种新颖的基础方案,旨在为任何 HI 提供实质性好处
实时监听。该算法非常适合在 HA、CI 和其他面对面的应用中实施
通信应用。这种新算法的有效性将使用 HI 和
听力正常 (NH) 的听众。第二个目标通过修改它以接受一个新的算法来扩展它
少量的未来时间范围信息,这可以提高其降噪性能,但会
引入短暂的处理延迟。理由是不同的设备具有不同的允许延迟。
面对面的通信设备(HA、CI等)具有严格的低延迟要求,但其他重要的
通信系统(例如电话)有不同的要求。未来可能会增加
这些要求内的时间范围信息(最多 150 毫秒)将带来更好的语音清晰度。
但潜在好处的大小尚不清楚。目前将确定这一关键信息。
使用 HI 和 NH 监听器,我们将测量已处理的噪声句子的清晰度
使用各种数量的未来时间信息。
这项全面的奖学金培训计划将提供个性化的、指导性的研究培训
在高度支持和富有成效的环境中拥有世界一流的教师。拟议的工作将赋予
申请人具备过渡到研究生涯下一阶段所需的技能,改变我们的治疗方式
听力损失,严重影响数百万美国人的生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Martin Johnson其他文献
Eric Martin Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Martin Johnson', 18)}}的其他基金
Real-time deep learning to improve speech intelligibility in noise
实时深度学习提高噪声中的语音清晰度
- 批准号:
10558196 - 财政年份:2022
- 资助金额:
$ 7.01万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 7.01万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 7.01万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 7.01万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 7.01万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 7.01万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 7.01万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 7.01万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 7.01万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 7.01万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 7.01万 - 项目类别:
Research Grant