Multi-organ omic model for sepsis therapeutic development
脓毒症治疗开发的多器官组学模型
基本信息
- 批准号:10557072
- 负责人:
- 金额:$ 3.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-23 至 2024-08-22
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdhesionsAffectAlveolarAnti-Inflammatory AgentsAutomobile DrivingBedsBioconductorBiological AssayBiomimeticsCapillary PermeabilityCell Culture TechniquesCellsCessation of lifeClinical TrialsComplementDevelopmentDiseaseEndothelial CellsEndotheliumEventFunctional disorderGene Expression RegulationGoalsHealthHeterogeneityHourHumanImmune responseIn VitroIncubatedInfectionInflammatoryInflammatory ResponseIntegrinsKidneyKidney DiseasesLeftLeukocyte TraffickingLeukocytesLifeLiverLungMediator of activation proteinMethodologyMethodsModelingMorphologyMultiple Organ FailureOrganOrganoidsPathogenesisPathologicPathway AnalysisPathway interactionsPatternPermeabilityPharmaceutical PreparationsPharmacologyPhenotypePhysiologicalPlasmaProcessProteinsProteomicsR programming languageRANK proteinReportingResearchRodentRoleScienceSelectinsSepsisSignal PathwaySignal TransductionStimulusTechniquesTherapeuticTissuesUnited States National Institutes of HealthValidationbioinformatics toolclinical materialdrug developmentdrug discoverydruggable targetexperimental studygenetic analysisin silicoin vivoinhibitorinsightmigrationneutrophilnovelpre-clinicalpre-clinical researchpredicting responseprotein expressionprotein functionprotein kinase C-deltarational designresponsescreeningsepticseptic patientsspecies differencetherapeutic developmenttherapeutic target
项目摘要
ABSTRACT
Sepsis-3 is defined as life-threatening organ dysfunction caused by the body’s dysregulated host response to
an infection. An early feature of sepsis is the dysregulated activation of endothelial cells, which initiates a
cascade of inflammatory signaling events by releasing various mediators, leading to leukocyte adhesion,
migration, tissue damage and multiple organ dysfunction syndrome (MODS) if left uncontrolled. To date,
therapeutic approaches for the treatment of sepsis are largely supportive, but there are no specific
pharmacologic therapies available that protect from endothelial cell dysfunction. All sepsis drugs recently
developed in rodents have failed in clinical trials, in large part because of the differences in species and the
diverse phenotypes of endothelial cells demonstrating heterogeneity in function, morphology and omic
expression patterns. Novel methods leveraging recent developments in omics are therefore needed to
investigate how this heterogeneity impacts response to therapeutics in sepsis. In this project, I will employ omic
and in silico models to investigate the role of specific protein targets in sepsis progression. Our group has
identified Protein Kinase C-Delta (PKCδ) as a critical regulator of the inflammatory response, and I will use my
model to determine the role of PKCδ in the progression of inflammatory signaling in human lung, liver and kidney
endothelium in sepsis. Overall, these studies will help identify druggable/therapeutic targets that will then be
experimentally validated using our novel microphysiological assay (MPA). I hypothesize that my proposed
comprehensive, in silico proteomics model and corresponding validation experiments in our MPA will
provide unique insight on the role of protein targets in predicting physiological responses in humans
under septic and normal conditions. Our long-term goal is to develop a methodology to rationally design
therapeutics for treating sepsis. The specific aims of my study are to 1) Create a comprehensive, in silico
proteomics model to predict physiological responses in humans under septic and normal conditions and 2) Use
a novel MPA to validate the role of the protein targets as predicted in Aim 1. These synergistic studies will focus
on the role of the endothelial cell heterogeneity in sepsis, and the role of PKCδ and other protein targets in
regulating the endothelial cell response in sepsis using an in silico model and an MPA employing human
endothelial cells, and leukocytes and plasma from septic patients and healthy subjects to increase translatability
in therapeutic development.
摘要
脓毒症-3被定义为由身体对脓毒症的宿主反应失调引起的危及生命的器官功能障碍。
感染脓毒症的早期特征是内皮细胞的活化失调,其启动了一种新的免疫调节机制。
通过释放各种介质,导致白细胞粘附,
迁移、组织损伤和多器官功能障碍综合征(MODS)。到目前为止,
治疗脓毒症的治疗方法在很大程度上是支持性的,但没有特异性的
现有的保护内皮细胞功能障碍的药物疗法。最近所有的败血症药物
在啮齿类动物中开发的药物在临床试验中失败了,这在很大程度上是因为物种和
内皮细胞的不同表型在功能、形态和组学方面表现出异质性
表达模式因此,需要利用组学的最新发展的新方法,
研究这种异质性如何影响脓毒症治疗的反应。在这个项目中,我将采用omic
和计算机模拟模型,以研究特定蛋白质靶点在脓毒症进展中的作用。我们集团
我发现蛋白激酶C-δ(PKCδ)是炎症反应的关键调节因子,我将用我的
模型以确定PKCδ在人肺、肝和肾中炎症信号传导进展中的作用
内皮细胞在脓毒症中的作用总的来说,这些研究将有助于确定可药用/治疗靶点,
实验验证使用我们的新的微生理测定(MPA)。我假设我的提议
全面的,在计算机蛋白质组学模型和相应的验证实验,在我们的MPA将
对蛋白质靶点在预测人类生理反应中的作用提供了独特的见解
在败血症和正常情况下。我们的长期目标是开发一种方法,
用于治疗脓毒症的治疗剂。我的研究的具体目标是1)创建一个全面的,在硅片
蛋白质组学模型,以预测人类在脓毒症和正常条件下的生理反应,以及2)使用
一种新的MPA,以验证目标1中预测的蛋白质靶点的作用。这些协同研究将侧重于
内皮细胞异质性在脓毒症中的作用,以及PKCδ和其他蛋白靶点在脓毒症中的作用。
使用计算机模拟模型和使用人MPA调节脓毒症中的内皮细胞应答
内皮细胞以及来自脓毒症患者和健康受试者的白细胞和血浆,以增加可翻译性
在治疗发展中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jordan C. Langston其他文献
Jordan C. Langston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jordan C. Langston', 18)}}的其他基金
Multi-organ omic model for sepsis therapeutic development
脓毒症治疗开发的多器官组学模型
- 批准号:
10315285 - 财政年份:2021
- 资助金额:
$ 3.65万 - 项目类别:
Multi-organ omic model for sepsis therapeutic development
脓毒症治疗开发的多器官组学模型
- 批准号:
10675762 - 财政年份:2021
- 资助金额:
$ 3.65万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 3.65万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 3.65万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 3.65万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 3.65万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 3.65万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 3.65万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 3.65万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 3.65万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 3.65万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 3.65万 - 项目类别:














{{item.name}}会员




