Leveraging multi-omics for endotyping to identify subtypes and mechanisms of cardiometabolic diseases
利用多组学进行内分型来识别心脏代谢疾病的亚型和机制
基本信息
- 批准号:10664282
- 负责人:
- 金额:$ 16.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-05 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultBig DataBioinformaticsBiologicalBiological MarkersBiologyBloodCardiometabolic DiseaseClinicalConsensusCoronary ArteriosclerosisDNADataData SetDevelopmentDiabetes MellitusDiseaseDisease ClusteringsDisease ProgressionDisease susceptibilityElectronic Health RecordFramingham Heart StudyGene ExpressionGenotypeGoalsHypertensionIndividualJackson Heart StudyKnowledgeLinkMeasurementMeasuresMediatingMediatorMetabolic syndromeMetabolismMethodsMorbidity - disease rateMulti-Ethnic Study of AtherosclerosisMultiomic DataNational Heart, Lung, and Blood InstituteObesityOnset of illnessParticipantPathway AnalysisPatientsPhenotypePlasmaProspective cohortProteomeProteomicsPublic HealthResearchResourcesRiskRisk FactorsScientistSubgroupTestingTherapeuticTimeTrainingTrans-Omics for Precision Medicinebariatric surgerybiobankcardiometabolic riskcardiometabolismclinical diagnosisclinically relevantdisorder riskdisorder subtypeexperiencegenome wide association studyhigh dimensionalityhigh riskimprovedinnovationmetabolomemetabolomicsmortalitymultiple omicsnetwork modelsnovelobese patientspersonalized diagnosticsphenomephenotypic datapolygenic risk scorepredict responsivenesspreventprogramsrisk stratificationskillssmall moleculestudy populationtargeted treatmenttooltraining opportunitytranscriptometranscriptomicstreatment responsetreatment strategy
项目摘要
Project Summary
Prior studies have identified several risk factors related to cardiometabolic diseases. However, the rates of risk
factor elevation are highly variable among patients. For example, despite obesity being identified as a primary
risk factor for cardiometabolic diseases, a subgroup of obese patients does not develop downstream
cardiometabolic complications. This suggests that there are other mediating mechanisms, independent of
known risk factors, underlying cardiometabolic diseases. This project will leverage multi-omics data in
conjunction with clustering approaches capitalizing on genome-wide association study (GWAS) data in BioVU,
GWAS and other omics data generated by the NHLBI Trans-Omics for Precision Medicine (TOPMed) program
and metabolomics data collected at 3 time points in a prospective cohort of bariatric surgery to identify: 1)
clusters of individuals that represent cardiometabolic diseases (defined as novel/endotypic determinants of
diseases), 2) endotypes of each cardiometabolic disease by clustering individuals within each disease
(determined as pathobiological mechanisms related to disease) and 3) endotypes of responsiveness to
bariatric surgery. To explore these overall study goals, the similarity network fusion method will be used along
with the consensus clustering approach. Specifically, this project aims to 1) create genetically predicted levels
of transcriptome, proteome and metabolome in 54,000 individuals in BioVU, use these predicted levels to
construct clusters of individuals and examine whether these clusters represent diseases using the BioVU
phenotype data, 2) construct clusters of individuals using direct measurements of multi-omics data
(transcriptome, proteome and metabolome) in over 5,000 individuals in TOPMed, construct genetically
predicted levels of the obtained clusters and impute them in BioVU using the BioVU GWAS data and explore
whether these predicted levels represent cardiometabolic diseases using phenotype data in BioVU and 3)
create metabolomic driven clusters using the plasma metabolomics data at baseline, 3 months and 12 months
post bariatric surgery in 104 patients, explore the association of the identified clusters with cardiometabolic
responsiveness and identify novel baseline metabolomic predictors of responsiveness to weight loss surgery .
The proposed study will leverage multilayered –omics data using a novel and innovative network modeling
analysis, providing Dr. Bagheri with critical skills, tools and experience to complete the research aims. This will
be achieved by the accomplishment of the following two training goals which will help her to become an
independent ‘big data’ cardiometabolic scientist: 1) gaining more in-depth knowledge of small molecule
metabolism in biologically-informed cardiometabolic disease subtypes and 2) gaining expertise and expand her
existing experience in bioinformatics and statistical multi-omics integration methods.
项目摘要
先前的研究已经确定了与心脏代谢疾病相关的几个风险因素。然而,风险率
因子升高在患者中高度可变。例如,尽管肥胖被确定为主要原因,
心脏代谢疾病的危险因素,肥胖患者的亚组不会发展为下游
心脏代谢并发症这表明还有其他独立于
已知的危险因素,潜在的心脏代谢疾病。该项目将利用多组学数据,
结合利用BioVU中全基因组关联研究(GWAS)数据的聚类方法,
GWAS和其他组学数据由NHLBI Trans-Omics for Precision Medicine(TOPMed)计划生成
以及在减肥手术的前瞻性队列中在3个时间点收集的代谢组学数据,以确定:1)
代表心脏代谢疾病的个体集群(定义为新的/内源性决定因素,
疾病),2)通过将每种疾病内的个体聚类来确定每种心脏代谢疾病的内型
(确定为与疾病相关的病理生物学机制)和3)对
减肥手术为了探索这些总体研究目标,将沿着使用相似网络融合方法
共识聚类方法。具体来说,该项目旨在1)创造基因预测水平
转录组,蛋白质组和代谢组在54,000人在BioVU,使用这些预测水平,
使用BioVU构建个体集群,并检查这些集群是否代表疾病
表型数据,2)使用多组学数据的直接测量构建个体的聚类
(转录组,蛋白质组和代谢组)在超过5,000个人在TOPMed,构建遗传
获得的聚类的预测水平,并使用BioVU GWAS数据将其插补到BioVU中,
使用BioVU中的表型数据,这些预测水平是否代表心脏代谢疾病,以及3)
使用基线、3个月和12个月时的血浆代谢组学数据创建代谢组学驱动的聚类
在104例患者的减肥手术后,探索所确定的群集与心脏代谢的相关性,
反应性,并确定新的基线代谢组学预测的反应性减肥手术。
拟议的研究将利用多层组学数据使用一种新颖的和创新的网络建模
分析,为Bagheri博士提供关键技能,工具和经验,以完成研究目标。这将
通过以下两个培训目标的实现,这将有助于她成为一个
独立“大数据”心脏代谢科学家:1)获得更深入的小分子知识
在生物学上知情的心脏代谢疾病亚型的代谢和2)获得专业知识,并扩大她
生物信息学和统计多组学整合方法方面的现有经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Minoo Sadat Bagheri Naraghi其他文献
Minoo Sadat Bagheri Naraghi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 16.44万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 16.44万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 16.44万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 16.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 16.44万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 16.44万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 16.44万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 16.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 16.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 16.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)