Neuron-oligodendrocyte communication underlying myelin distribution in the neocortex
新皮质中髓磷脂分布的神经元-少突胶质细胞通讯
基本信息
- 批准号:10664007
- 负责人:
- 金额:$ 42.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAdultAffectAxonBindingBrainCRISPR/Cas technologyCandidate Disease GeneCellsCellular biologyCentral Nervous SystemCerebral cortexClassificationCodeCommunicationComplexCuesCuprizoneDataDemyelinationsDevelopmentDevelopmental BiologyEvolutionFunctional disorderGap JunctionsGeneticGoalsInterneuronsInvestigationKnowledgeLabelLigandsLipidsLocationMapsMediatingMembraneMembrane ProteinsModelingMolecularMolecular ProfilingMonitorMorphologyMultiple SclerosisMyelinMyelin SheathNatural regenerationNeocortexNeuronsOligodendrogliaParvalbuminsPathologicPatternPopulationPositioning AttributeProcessProtocols documentationRanvier&aposs NodesRegulationReportingRepressionResolutionRoleSchizophreniaSignal TransductionSignaling MoleculeSomatostatinStructureSurfaceSynapsesTestingTherapeuticThickVasoactive Intestinal PeptideWorkcandidate identificationcell typedesignexperienceexperimental studyin vivo evaluationin vivo two-photon imagingmRNA Differential Displaysmyelinationneocorticalnervous system disorderneural circuitneurotransmissionreceptorremyelinationresponsetranscriptometranscriptomicsvirtual
项目摘要
Summary:
Over vertebrate evolution, the development of the myelin sheath has contributed to the expansion of the central
nervous system and the emergence of complex brain function. Cumulative evidence indicates that the level of
myelination and its positioning over the axon may be dependent on the class identity of myelinated neurons. A
canonical example is the difference between L5 projection neurons, with extensive and uniform myelination, and
the L2/3 callosal projection neurons, with lower and more diverse patterns of myelination, including “intermittent”
profiles, where myelin tracts are separated by long unmyelinated regions rather than short nodes of Ranvier.
Little is known about the mechanistic principles underlying cellular interaction between myelinating
oligodendrocytes (OL) and axons of distinct neuronal classes in the CNS. Yet this knowledge is fundamental to
understanding the cellular and developmental biology of myelination and regeneration. Focusing on the
neocortex, we propose to answer fundamental questions regarding the mechanisms that control neuron-type
specific myelination, and test hypotheses on how “attractive” and “repulsive” cues expressed by neuronal
subtypes dynamically regulate their interactions with OLs. Here, we will 1) use molecular profiling of
oligodendrocytes and cortical neuron subtypes across different cortical layers to map differences in their
transcriptome, and use this data to generate a molecular interactome of candidates for genes mediating neuron-
OL communication that may regulate neuron-subtype-specific myelination. We will 2) employ a screen to identify
candidates able to induce or repress myelination (Aim 1). We will then 3) investigate membrane protein
composition of myelinated and unmyelinated axonal segments of a specific neuronal class at subcellular
resolution to understand the regulation of myelin positioning along the axon; and further 4) study whether long
unmyelinated regions are differentially enriched for functionally-relevant structures such as synapses, gap
junctions, and axonal branches (Aim 2). It has been reported that increased neuronal activity promotes
myelination, which in turn stabilizes axon structure and neural circuit connectivity. Disrupted myelination can
contribute to many debilitating neurological disorders, including multiple sclerosis and schizophrenia, and
promoting oligodendrocyte differentiation and remyelination is an important therapeutic goal. We will investigate
the molecular mechanisms that control cell-type specific adaptive remodeling of myelin and its regeneration after
demyelination (Aim 3). In summary, the work proposed here aims to inform a conceptual framework for how
different classes of neurons and oligodendrocytes interact to achieve differential myelination, mechanisms that
will be critical in understanding the role of myelin in circuit function and dysfunction.
总结:
在脊椎动物的进化过程中,髓鞘的发育促进了中央神经的扩张
神经系统和复杂脑功能的出现。累积的证据表明,
髓鞘形成及其在轴突上的定位可能取决于有髓鞘神经元的类别身份。一
典型的例子是L5投射神经元之间的差异,具有广泛且均匀的髓鞘形成,与
L2/3胼胝体投射神经元,具有较低和更多样化的髓鞘形成模式,包括“间歇性”
轮廓,其中髓鞘束被长的无髓鞘区域而不是短的Ranvier节点分开。
关于髓鞘形成和髓鞘形成之间的细胞相互作用的机制原理知之甚少。
少突胶质细胞(OL)和CNS中不同神经元类别的轴突。然而,这些知识是基础,
了解髓鞘形成和再生的细胞和发育生物学。围绕
新皮层,我们建议回答有关控制神经元类型的机制的基本问题,
特定的髓鞘形成,并测试假设如何“吸引”和“排斥”线索表达的神经元
亚型动态调节它们与OL的相互作用。在这里,我们将1)使用分子分析,
不同皮质层的少突胶质细胞和皮质神经元亚型,以绘制它们在不同皮质层中的差异。
转录组,并使用这些数据来产生候选基因的分子相互作用组,所述候选基因介导神经元-
OL通信,可能调节神经元亚型特异性髓鞘形成。我们将使用屏幕来识别
能够诱导或抑制髓鞘形成的候选物(Aim 1)。然后我们将研究膜蛋白
特定神经元类别的有髓和无髓轴突节段的亚细胞组成
决议,以了解髓鞘定位的调节沿着轴突;并进一步4)研究是否长
无髓鞘区域差异富集功能相关的结构,如突触、间隙
连接和轴突分支(Aim 2)。据报道,增加的神经元活动促进
髓鞘形成,这反过来又稳定轴突结构和神经回路连接。髓鞘形成中断
导致许多神经系统疾病,包括多发性硬化症和精神分裂症,
促进少突胶质细胞分化和髓鞘再生是重要的治疗目标。我们将调查
控制髓鞘的细胞类型特异性适应性重塑及其再生的分子机制
脱髓鞘(Aim 3)。总之,这里提出的工作旨在为如何
不同种类的神经元和少突胶质细胞相互作用以实现不同的髓鞘形成,
将是至关重要的了解髓鞘的作用,电路功能和功能障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paola Arlotta其他文献
Paola Arlotta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paola Arlotta', 18)}}的其他基金
Systematic identification of enhancers to target the breadth of excitatory and inhibitory neuronal cell types in the cerebral cortex
系统鉴定增强剂以靶向大脑皮层兴奋性和抑制性神经元细胞类型的广度
- 批准号:
10512459 - 财政年份:2022
- 资助金额:
$ 42.25万 - 项目类别:
Comprehensive single-cell atlas of the developing mouse brain
发育中的小鼠大脑的综合单细胞图谱
- 批准号:
10686208 - 财政年份:2022
- 资助金额:
$ 42.25万 - 项目类别:
Neuron-oligodendrocyte communication underlying myelin distribution in the neocortex
新皮质中髓磷脂分布的神经元-少突胶质细胞通讯
- 批准号:
10502460 - 财政年份:2022
- 资助金额:
$ 42.25万 - 项目类别:
Comprehensive single-cell atlas of the developing mouse brain
发育中的小鼠大脑的综合单细胞图谱
- 批准号:
10523550 - 财政年份:2022
- 资助金额:
$ 42.25万 - 项目类别:
Molecular principles of neuronal maturation and integration in the adult and aging brain
成人和衰老大脑中神经元成熟和整合的分子原理
- 批准号:
10404657 - 财政年份:2018
- 资助金额:
$ 42.25万 - 项目类别:
Molecular principles of neuronal maturation and integration in the adult and aging brain
成人和衰老大脑中神经元成熟和整合的分子原理
- 批准号:
10159316 - 财政年份:2018
- 资助金额:
$ 42.25万 - 项目类别:
Modeling ASD-linked genetic mutations in 3D human brain organoids
在 3D 人脑类器官中模拟 ASD 相关基因突变
- 批准号:
10308455 - 财政年份:2018
- 资助金额:
$ 42.25万 - 项目类别:
Genetic neuroscience: How human genes and alleles shape neuronal phenotypes
遗传神经科学:人类基因和等位基因如何塑造神经元表型
- 批准号:
10223999 - 财政年份:2017
- 资助金额:
$ 42.25万 - 项目类别:
Genetic neuroscience: How human genes and alleles shape neuronal phenotypes
遗传神经科学:人类基因和等位基因如何塑造神经元表型
- 批准号:
9757833 - 财政年份:2017
- 资助金额:
$ 42.25万 - 项目类别:
A Comprehensive Center for Mouse Brain Cell Atlas
小鼠脑细胞图谱综合中心
- 批准号:
9415765 - 财政年份:2017
- 资助金额:
$ 42.25万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 42.25万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 42.25万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 42.25万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 42.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 42.25万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 42.25万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 42.25万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 42.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 42.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 42.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




