A Phylodynamic Artificial Intelligence framework to predict evolution of SARS-CoV-2 variants of concern in Immunocompromised persons with HIV (PhAI-CoV)
用于预测免疫功能低下的 HIV 感染者 (PhAI-CoV) 中关注的 SARS-CoV-2 变异体进化的系统动力学人工智能框架
基本信息
- 批准号:10664035
- 负责人:
- 金额:$ 74.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-12 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAcuteAffectAmino AcidsArtificial IntelligenceAutomobile DrivingBiologicalCOVID-19COVID-19 pandemicCOVID-19 patientCOVID-19 severityCOVID-19 vaccinationCessation of lifeCitiesClassificationClinicalClinical DataClinical ManagementCoronavirusCountryDataDatabasesDiseaseEligibility DeterminationEpidemicEpidemiologic MonitoringEventEvolutionFloridaGeneral PopulationGlycoproteinsGoalsHIVHIV InfectionsHIV SeronegativityHerd ImmunityHospitalizationImmune EvasionImmune System DiseasesImmunocompromised HostIncidenceIndividualInfectionInvestigationLanguage DevelopmentLearningLinkLongitudinal cohortMeasuresMethodsModelingMolecular EpidemiologyMutationOutcomeParticipantPathogenesisPathogenicityPatientsPatternPersonsPopulationPopulation DynamicsProbabilityPublic HealthReceptor CellRecording of previous eventsReportingResearch PersonnelSARS-CoV-2 B.1.617.2SARS-CoV-2 genomeSARS-CoV-2 infectionSARS-CoV-2 variantSamplingSiteSurveysTestingTrainingUnited StatesVaccinatedVaccinationVaccinesVariantViralartificial intelligence algorithmchronic infectionco-infectioncohortcomparison controldeep learningdeep learning modelexperiencegenomic epidemiologyimmunosuppressedinfection burdeninfection ratemortalitymultidisciplinarynovelpublic health relevancereceptor bindingrecruitsaliva samplesevere COVID-19tooltransmission processunvaccinatedvaccine effectivenessvaccine hesitancyvariants of concern
项目摘要
Summary
The United States (US) is the most affected country worldwide by the ongoing Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) pandemic. The availability of effective vaccines had initially slowed
down new infections, reducing incidence of severe coronavirus disease 2019 (COVID-19) cases, hospitalization
burden, and deaths. Unfortunately, vaccine hesitancy, and the emergence of new, highly transmissible variants
of concern (VOCs), such as the Delta variant that has rapidly become the dominant one in the US among both
non-vaccinated and vaccine breakthrough cases, have caused a new dramatic epidemic surge in July-August
2021, and are likely to be an ongoing problem hindering epidemic eradication efforts. Although data on increased
mortality and worse clinical outcome in people with HIV (PWH) with COVID-19 is somewhat equivocal, recent
surveys indicate that PWH has a higher likelihood of severe disease or death than patients without immune
dysfunction. Moreover, while most people effectively clear SARS-CoV-2 in 2-4 weeks, several reports of infection
in immunosuppressed individuals have shown intra-host emergence of multi-mutational variants, some at sites
linked to immune evasion, especially in case of persistent infection. The overarching goal of the proposed project
is to investigate SARS-CoV-2 genomes intra-host evolution in the context of HIV infection by developing a
phylodynamic and artificial Intelligence framework to assess the emergence and likelihood of SARS-CoV-2 VOC
(PhAI-CoV) in immunocompromised PWH. The hypothesis is that SARS-CoV-2 infection in PWH can result in
enhanced evolution of viral variants that can efficiently be tracked by phylodynamic analysis and predicted to be
VOCs by artificial intelligence algorithms. To test such a hypothesis, we developed three specific aims that will
investigate three complementary, albeit independent, issues. We will use a well-characterized cohort of PWH
and rigorously collected longitudinal data and samples from patients with SARS-CoV-2 co-infection in Miami,
Florida, one of the cities with the highest HIV and SARS-CoV-2 infection burden in the US. In Specific Aim 1 we
will recruit and retain n=120 PWH with acute SARS-CoV-2 infection, as well as n=120 matching controls with
acute SARS-CoV2 infection but without HIV, and study how COVID-19 disease severity differs by HIV status,
depending on SARS-CoV-2 vaccination history and infecting variant. In Specific Aim 2, we will Investigate intra-
host SARS-CoV-2 evolution throughout the duration of infection to assess the likelihood of SARS-CoV-2 infection
in PWH to result in sustained intra-host evolution leading to the emergence of novel viral variants. In specific
Aim 3, we will develop an artificial intelligence algorithm that can predict the likelihood of new variants to be
VOCs. Understanding the evolutionary scenarios of SARS-CoV-2 variants emergence within HIV infection and
evaluating the probability for increased strain infectivity and/or pathogenicity will provide a crucial tool for
planning and implementing public health measures before transmission occurs in the general population.
总结
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Elusive Coreceptors for the SARS-CoV-2 Spike Protein.
- DOI:10.3390/v15010067
- 发表时间:2022-12-25
- 期刊:
- 影响因子:0
- 作者:Berkowitz RL;Ostrov DA
- 通讯作者:Ostrov DA
Transmission cluster characteristics of global, regional, and lineage-specific SARS-CoV-2 phylogenies
全球、区域和谱系特异性 SARS-CoV-2 系统发育的传播集群特征
- DOI:10.1109/bibm55620.2022.9995364
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Prosperi, Mattia;Rife, Brittany;Marini, Simone;Salemi, Marco
- 通讯作者:Salemi, Marco
Predicting emerging SARS-CoV-2 variants of concern through a One Class dynamic anomaly detection algorithm.
- DOI:10.1136/bmjhci-2022-100643
- 发表时间:2022-12
- 期刊:
- 影响因子:4.1
- 作者:Nicora, Giovanna;Salemi, Marco;Marini, Simone;Bellazzi, Riccardo
- 通讯作者:Bellazzi, Riccardo
Dynamic Prediction of Non-Neutral SARS-Cov-2 Variants Using Incremental Machine Learning.
- DOI:10.3233/shti220550
- 发表时间:2022-05-25
- 期刊:
- 影响因子:0
- 作者:Nicora, Giovanna;Marini, Simone;Bellazzi, Riccardo
- 通讯作者:Bellazzi, Riccardo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARIA LUISA ALCAIDE其他文献
MARIA LUISA ALCAIDE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARIA LUISA ALCAIDE', 18)}}的其他基金
The CROWN study: Comprehensive Research on Oral and mental health among WomeN
CROWN 研究:女性口腔和心理健康的综合研究
- 批准号:
10670574 - 财政年份:2023
- 资助金额:
$ 74.42万 - 项目类别:
A Phylodynamic Artificial Intelligence framework to predict evolution of SARS-CoV-2 variants of concern in Immunocompromised persons with HIV (PhAI-CoV)
用于预测免疫功能低下的 HIV 感染者 (PhAI-CoV) 中关注的 SARS-CoV-2 变异体进化的系统动力学人工智能框架
- 批准号:
10481017 - 财政年份:2022
- 资助金额:
$ 74.42万 - 项目类别:
Women HIV Cohort Study: HIV infection and treatment among women of reproductive age
妇女艾滋病毒队列研究:育龄妇女的艾滋病毒感染和治疗
- 批准号:
10487491 - 财政年份:2019
- 资助金额:
$ 74.42万 - 项目类别:
Women HIV Cohort Study: HIV infection and treatment among women of reproductive age
妇女艾滋病毒队列研究:育龄妇女的艾滋病毒感染和治疗
- 批准号:
10263074 - 财政年份:2019
- 资助金额:
$ 74.42万 - 项目类别:
Women HIV Cohort Study: HIV infection and treatment among women of reproductive age
妇女艾滋病毒队列研究:育龄妇女的艾滋病毒感染和治疗
- 批准号:
10026023 - 财政年份:2019
- 资助金额:
$ 74.42万 - 项目类别:
Innovation Fund Application to the Multicenter AIDS Cohort Study (MACS)/Womens Interagency HIV Study (WIHS) Combined Cohort Study (MWCCS): COVID-19 Vaccine Acceptance and Hesitancy (CVHB)
多中心艾滋病队列研究 (MACS)/女性机构间艾滋病毒研究 (WIHS) 联合队列研究 (MWCCS) 创新基金申请:COVID-19 疫苗接受和犹豫 (CVHB)
- 批准号:
10397893 - 财政年份:2019
- 资助金额:
$ 74.42万 - 项目类别:
Women HIV Cohort Study: HIV infection and treatment among women of reproductive age
妇女艾滋病毒队列研究:育龄妇女的艾滋病毒感染和治疗
- 批准号:
10263070 - 财政年份:2019
- 资助金额:
$ 74.42万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 74.42万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 74.42万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 74.42万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 74.42万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 74.42万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 74.42万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 74.42万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 74.42万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 74.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 74.42万 - 项目类别:
Operating Grants














{{item.name}}会员




