Operationalizing Machine Learning and Discrete Event Simulation Models to Improve Clinic Efficiency
运用机器学习和离散事件模拟模型来提高诊所效率
基本信息
- 批准号:10664923
- 负责人:
- 金额:$ 32.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAmbulatory Care FacilitiesAppointmentBooksChildhoodClient satisfactionClinicClinicalDataData SetEffectivenessElectronic Health RecordEventFaceFast Healthcare Interoperability ResourcesFeelingGlaucomaLengthMachine LearningMapsMethodologyMethodsModelingOphthalmologyOutpatientsPatient CarePatient SchedulesPatientsPhysiciansProductionProviderQuality of CareRegulationReportingResearchResourcesScheduleTestingTimeVisitWait TimeWorkapplication programming interfacebarrier to careburnoutdata accesseffectiveness evaluationelectronic health datafollow-upimprovedindividual patientmachine learning modelmodels and simulationnovelpost implementationpredictive modelingpressureprospectivetool
项目摘要
PROJECT SUMMARY
Physicians often report feeling pressured to see more patients to maintain revenue, while having less available
time for patient care. Systematic data-driven methods for efficiently scheduling patients are important as
physicians are pressured to see more and more patients. We propose that real time prediction models of
patient visit lengths, the likelihood of missing appointments, and of patient wait times will help schedule
patients more efficiently. Clinics will be able to safely overbook to avoid empty slots from missed appointments,
have guidance for scheduling urgent add-on patients, and provide wait time estimates for patients when there
are delays. We will develop methodologies for accessing data needed for these predictions in real time and
propose that the integration of these models into workflows will improve scheduling accuracy, patient wait time,
and patient satisfaction, while also increasing clinic volumes.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicole Gray Weiskopf其他文献
Nicole Gray Weiskopf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicole Gray Weiskopf', 18)}}的其他基金
Health equity and the impacts of EHR data bias associated with social determinants
健康公平以及与社会决定因素相关的电子病历数据偏差的影响
- 批准号:
10584190 - 财政年份:2023
- 资助金额:
$ 32.73万 - 项目类别:
Identifying and understanding drivers of selection bias and information bias in clinical COVID-19 data
识别和理解临床 COVID-19 数据中选择偏差和信息偏差的驱动因素
- 批准号:
10192372 - 财政年份:2021
- 资助金额:
$ 32.73万 - 项目类别:
Identifying and understanding drivers of selection bias and information bias in clinical COVID-19 data
识别和理解临床 COVID-19 数据中选择偏差和信息偏差的驱动因素
- 批准号:
10380032 - 财政年份:2021
- 资助金额:
$ 32.73万 - 项目类别:
Operationalizing Machine Learning and Discrete Event Simulation Models to Improve Clinic Efficiency
运用机器学习和离散事件模拟模型来提高诊所效率
- 批准号:
10460170 - 财政年份:2020
- 资助金额:
$ 32.73万 - 项目类别:
Measuring and improving data quality for clinical quality measure reliability
测量和提高临床质量测量可靠性的数据质量
- 批准号:
9761576 - 财政年份:2017
- 资助金额:
$ 32.73万 - 项目类别:
Measuring and improving data quality for clinical quality measure reliability
测量和提高临床质量测量可靠性的数据质量
- 批准号:
9428949 - 财政年份:2017
- 资助金额:
$ 32.73万 - 项目类别: