Development and evaluation of human-friendly explanations for sepsis early-warning models
败血症预警模型的人性化解释的开发和评估
基本信息
- 批准号:10546200
- 负责人:
- 金额:$ 25.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAddressAgreementAlgorithm DesignAlgorithmsAmericanArchitectureArtificial IntelligenceAttentionAutoimmune DiseasesBeneficenceBioethics ConsultantsCaringChemotherapy-Oncologic ProcedureClinicalCritical CareDataData SetDependenceDevelopmentDiagnosisDiagnosticEthicsEvaluationExpert OpinionGoalsHealthHomeHospitalsHourHumanImmunocompromised HostIndividualLeadLongitudinal StudiesMapsMeasuresMethodsModelingMonitorNonmaleficenceOncologyOrgan TransplantationOutpatientsOutputPatient CarePatient MonitoringPatient RepresentativePatientsPerformancePhasePhysiciansPublishingRiskSamplingScoring MethodSepsisSepsis SyndromeTechnologyTestingTimeTransplantation SurgeryValidationVisualizationartificial intelligence algorithmbaseclinical decision-makingdeep learning algorithmdisorder riskgraphical user interfacehigh riskhuman dataimprovedinnovationmachine learning algorithmmonitoring devicemortalityneural networkpatient populationprediction algorithmpreventprogramspublic databaserisk predictionseptic patientssuccesstime usewearable device
项目摘要
Project Summary
The goal of this Phase I project is to render a proprietary artificial intelligence algorithm for sepsis
prediction developed by Patchd, Inc., compatible with explainability capabilities, providing clinicians underlying
reasons for increased disease risk, as opposed to a “black box” risk prediction alone. The algorithm is
additionally innovative in that it imputes sepsis risk based on vital sign data gathered from wearable devices,
providing constant real-time surveillance of high-risk patients at home without requiring in-patient monitoring.
Sepsis has a high mortality rate of approximately 40% and often occurs in immunocompromised patients such
as those undergoing cancer chemotherapy, organ transplant surgery, or treatment for autoimmune conditions.
Catching the condition early remains the best way to reduce mortality as well as prevent the long-term health
effects associated with post-sepsis syndrome, which occurs in up to 50% of sepsis patients. Artificial intelligence
(AI) represents an intriguing means of identifying sepsis early. By compiling vital sign data from high-risk patients
and analyzing any changes in real-time, machine learning algorithms have shown promise in identifying at-risk
patients up to 8 hours before sepsis onset in hospital settings. While these predictive algorithms demonstrate
the power of AI in patient monitoring, most high-risk patients are treated via out-patient care without constant
vital sign monitoring. Patchd, Inc. has developed an AI algorithm for sepsis prediction which employs vital sign
data generated using wearable devices, such as watches or patches which record patient data in real-time. Thus
far, the algorithm has been shown to improve sepsis prediction accuracy and provide earlier warnings for sepsis
onset compared to other scoring methods. Recently however, bioethicists and regulators have called for AI
algorithms to pair their predictions with supporting explanatory information providing both clinicians and patients
more transparency when considering treatment options. During this Phase I program, Patchd will employ its
current algorithm architecture and add so-called explainability functions, revealing to the user which specific vital
sign dynamics impacted a given prediction. Vital sign data will be analyzed for local explanation functionality
using both kernel and deep SHapley Additive exPlanations (SHAP). Data will also be analyzed to evaluate the
significance of data points over time, using attentional mechanisms to understand the importance of vital sign
changes over time. Primary human data sets, comprising true-positives, true-negatives, false-positives, and
false-negatives, will be tested using the algorithm to evaluate both its predictive and explainabilty capabilities.
Given that sepsis impacts 1.7 million Americans each year, the Patchd approach to explainable sepsis prediction
will address a large and growing market opportunity.
项目摘要
这个第一阶段项目的目标是为脓毒症呈现一种专有的人工智能算法
Patchd,Inc.开发的预测与可解释性功能兼容,为临床医生提供潜在的
疾病风险增加的原因,而不是单纯的“黑箱”风险预测。该算法是
此外,它的创新之处在于,它基于从可穿戴设备收集的生命体征数据来计算脓毒症风险,
在家中提供对高危患者的持续实时监测,而无需住院监测。
脓毒症的死亡率很高,约为40%,通常发生在免疫功能低下的患者中,如
那些正在接受癌症化疗、器官移植手术或治疗自身免疫性疾病的人。
及早发现疾病仍然是降低死亡率和预防长期健康的最好方法。
与败血症后综合征相关的影响,该综合征发生在多达50%的脓毒症患者中。人工智能
(AI)代表了一种有趣的早期识别脓毒症的方法。通过收集高危患者的生命体征数据
通过实时分析任何变化,机器学习算法在识别风险方面显示出了希望
在医院环境中,患者在脓毒症发病前8小时内。虽然这些预测算法表明
人工智能在患者监控方面的力量,大多数高危患者都是通过门诊治疗,而不是一成不变的
生命体征监测。Patchd公司开发了一种用于脓毒症预测的人工智能算法,该算法使用生命体征
使用可穿戴设备生成的数据,例如实时记录患者数据的手表或贴片。因此,
到目前为止,该算法已被证明可以提高脓毒症的预测精度,并提供脓毒症的早期警告
与其他计分方法相比,起始值更高。然而,最近,生物伦理学家和监管机构呼吁人工智能
算法将他们的预测与支持解释信息配对,为临床医生和患者提供
在考虑治疗方案时更具透明度。在此第一阶段计划期间,Patchd将使用其
当前的算法架构并增加了所谓的可解释性功能,向用户揭示了哪些特定的关键
符号动力学影响了一个给定的预测。生命体征数据将针对本地解释功能进行分析
使用内核和深度Shapley加性解释(Shap)。还将分析数据以评估
随着时间推移数据点的重要性,使用注意机制来理解生命体征的重要性
随着时间的推移而改变。主要人类数据集,包括真阳性、真阴性、假阳性和
假阴性,将使用该算法进行测试,以评估其预测和可解释性能力。
鉴于脓毒症每年影响170万美国人,Patchd方法可以解释脓毒症的预测
将抓住一个巨大且不断增长的市场机遇。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei-Jien Tan其他文献
Wei-Jien Tan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 25.43万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 25.43万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 25.43万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 25.43万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 25.43万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 25.43万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 25.43万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 25.43万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 25.43万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 25.43万 - 项目类别:
Research Grant