Commercial Readiness of a CI NR algorithm

CI NR 算法的商业准备情况

基本信息

  • 批准号:
    10546391
  • 负责人:
  • 金额:
    $ 102.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-25 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY / ABSTRACT Cochlear implant (CI) users are typically able to maintain conversations in quiet environments. However, when multiple people are talking simultaneously, such as at a large family dinner or in a restaurant, CI users have great difficulty participating in conversations and frequently withdraw or avoid the situation. Ideally, CI algorithms to remove background talkers (“babble”) from the signal will allow for improved comprehension and conversational engagement. Although CIs incorporate noise reduction (NR) algorithms, these algorithms are not effective when the background is babble. Separating babble from a foreground talker poses two significant challenges. First, the spectral properties of the signal and noise are extremely similar as both are speech. Second, the spectral and temporal properties of multi-talker babble change with time and are therefore difficult to predict. Despite these challenges, we developed an extremely effective algorithm called SEDA to remove babble. SEDA improved understanding of speech in babble at all signal-to-noise ratios (SNRs) tested by an average of 26 percentage points (or 38 points, when normalized with respect to hearing in quiet). In contrast, a commercial NR algorithm (ClearVoice from Advanced Bionics) provided little to no detectable benefit. In a successful Phase 2, we produced a commercially viable implementation of SEDA. Nevertheless, significant work is required to bring SEDA to commercial readiness. The Aims below were developed in conjunction with CI manufacturers to facilitate SEDA technology for licensing by CI manufacturers. Aim 1: Evaluate SEDA in non-babble listening situations. At minimum, SEDA must be beneficial with babble and not detrimental in other listening situations if it is to be commercially implemented into a CI. Therefore, we will evaluate the effect of SEDA in non-babble auditory scenes using speech recognition, listener preference, and a computational metric. Aim 2: Interrogate benefits of SEDA relative to commercial offerings from CI manufacturers. We will compare the effectiveness of SEDA with NR from Advanced Bionics, MED-EL, Cochlear, and Oticon Medical on understating speech in babble, white, and speech-shaped noise. Aim 3: Obtain real-world feedback from at home evaluations of SEDA. We will send patients home for a month with SEDA to collect feedback and to ascertain unexpected issues or listening situations to be addressed. Aim 4: Quantify the effects of computational trade-offs on SEDA performance. We will modify the number of parameters used in SEDA to adjust the computational requirements. Using a computational metric and speech recognition, we will evaluate the effects of the of these changes on SEDA’s performance.
项目总结/摘要 人工耳蜗植入(CI)用户通常能够在安静的环境中保持对话。 然而,当多个人同时说话时,例如在一个大家庭晚餐或在一家餐馆, CI用户很难参与对话,并且经常退出或避免这种情况。 理想地,用于从信号中去除背景讲话者(“多路重合”)的CI算法将允许改善的通信性能。 理解和会话参与。虽然CI包含降噪(NR)算法, 当背景是多路重合时,这些算法是无效的。从前景讲话者中分离出串音 提出了两个重大挑战。首先,信号和噪声的频谱特性非常相似, 两者都是言语。第二,多说话者串音的频谱和时间特性随时间变化, 因此很难预测。 尽管存在这些挑战,我们还是开发了一种非常有效的算法,称为SEDA, 胡言乱语SEDA提高了对在所有信噪比(SNR)下的多路串音中的语音的理解, 平均为26个百分点(或38个百分点,当相对于安静的听力标准化时)。相比之下, 商业NR算法(来自AdvancedBionics的ClearVoice)提供很少或没有可检测的益处。 在成功的第二阶段,我们产生了一个商业上可行的SEDA实现。然而,尽管如此, 要使SEDA进入商业化阶段,还需要做大量的工作。以下目标是在 与CI制造商合作,促进CI制造商获得SEDA技术许可。 目标1:在非串音收听情况下评估SEDA。至少,SEDA必须是有益的 具有多路重合,并且如果它要商业地实现到CI中,则在其他收听情况下是无害的。 因此,我们将使用语音识别来评估SEDA在非多路重合听觉场景中的效果, 收听者偏好和计算度量。 目标2:询问SEDA相对于CI制造商的商业产品的好处。我们 我将比较SEDA与Advanced Bionics、MED-EL、Cobriar和Oticon的NR的有效性 医学上关于在牙牙学语、白色和语音形状噪声中低估语音。 目标3:从SEDA的家庭评估中获得真实世界的反馈。我们会送病人回家 与SEDA合作一个月,以收集反馈,并确定意外问题或听力情况, 处理。 目标4:量化计算权衡对SEDA性能的影响。我们将修改 SEDA中用于调整计算要求的参数数量。使用计算度量 和语音识别,我们将评估这些变化对SEDA性能的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David M Landsberger其他文献

David M Landsberger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David M Landsberger', 18)}}的其他基金

Stimulating the cochlear apex without longer electrodes
无需较长电极即可刺激耳蜗尖部
  • 批准号:
    10287179
  • 财政年份:
    2021
  • 资助金额:
    $ 102.07万
  • 项目类别:
Stimulating the cochlear apex without longer electrodes
无需较长电极即可刺激耳蜗尖部
  • 批准号:
    10461862
  • 财政年份:
    2021
  • 资助金额:
    $ 102.07万
  • 项目类别:
Removing background talker noise for cochlear implant users
为人工耳蜗用户消除背景说话者噪音
  • 批准号:
    10009945
  • 财政年份:
    2020
  • 资助金额:
    $ 102.07万
  • 项目类别:
Commercial Readiness of a CI NR algorithm
CI NR 算法的商业准备情况
  • 批准号:
    10672315
  • 财政年份:
    2020
  • 资助金额:
    $ 102.07万
  • 项目类别:
Reduction in spread of excitation as predictor multi-channel spectral resolution
减少激励扩散作为预测器多通道光谱分辨率
  • 批准号:
    8727506
  • 财政年份:
    2012
  • 资助金额:
    $ 102.07万
  • 项目类别:
Reduction in spread of excitation as predictor multi-channel spectral resolution
减少激励扩散作为预测器多通道光谱分辨率
  • 批准号:
    8915669
  • 财政年份:
    2012
  • 资助金额:
    $ 102.07万
  • 项目类别:
Reduction in spread of excitation as predictor multi-channel spectral resolution
减少激励扩散作为预测器多通道光谱分辨率
  • 批准号:
    8810293
  • 财政年份:
    2012
  • 资助金额:
    $ 102.07万
  • 项目类别:
Reduction in spread of excitation as predictor multi-channel spectral resolution
减少激励扩散作为预测器多通道光谱分辨率
  • 批准号:
    8373787
  • 财政年份:
    2012
  • 资助金额:
    $ 102.07万
  • 项目类别:
Using current-focusing and current-steering to increase the number of effective c
使用电流聚焦和电流引导来增加有效电流的数量
  • 批准号:
    8247244
  • 财政年份:
    2009
  • 资助金额:
    $ 102.07万
  • 项目类别:
Using current-focusing and current-steering to increase the number of effective c
使用电流聚焦和电流引导来增加有效电流的数量
  • 批准号:
    7851163
  • 财政年份:
    2009
  • 资助金额:
    $ 102.07万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 102.07万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 102.07万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 102.07万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 102.07万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 102.07万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 102.07万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 102.07万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 102.07万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 102.07万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 102.07万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了