Removing background talker noise for cochlear implant users
为人工耳蜗用户消除背景说话者噪音
基本信息
- 批准号:10009945
- 负责人:
- 金额:$ 78.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-25 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAuditoryBionicsBuffersCellular PhoneClinicalCochlear ImplantsCodeCommunicationData CollectionDevicesEffectivenessEnvironmentEvaluationFamilyFourier TransformGoalsHearingHearing AidsLifeManufacturer NameModificationNamesNoisePeriodicityPropertyQuality of lifeResearchRestaurantsSignal TransductionSpeechSpeech PerceptionSystemTestingTimeVisualcommercializationdenoisinghearing impairmentimprovedpreferenceprototypesignal processingsoundspeech in noisevirtual
项目摘要
PROJECT SUMMARY / ABSTRACT
When hearing-impaired listeners are properly aided with a hearing aid (HA) or cochlear implant (CI),
they are often able to comfortably maintain a conversation in quiet environments. However, in group
environments, such as a large family dinner, restaurant, or other environment where multiple people are talking
simultaneously, hearing-impaired listeners have great difficulty participating in conversations and frequently
withdraw or avoid the situation. As such, it would be highly beneficial to implement an algorithm into HAs or CIs
to remove background talkers (“babble”) from the signal to reduce listening effort for the hearing-impaired
listener and allow them to converse as if they were in a quiet environment. Although HAs and CIs frequently
incorporate noise reduction algorithms, these algorithms are not effective when the background is babble. The
problem of removing babble involves segregating speech from speech. Hence, the spectral properties of the
signal and noise are extremely similar.
Despite these challenges, we developed an extremely effective algorithm named SEDA to remove
background babble. A prototype of SEDA was implemented on an iPhone and evaluated on 10 CI users.
SEDA improved understanding of speech with background talkers at all signal-to-noise ratios (SNRs) tested;
on average, word understanding in babble improved by 31 percentage points. By contrast, the state-of-the-art
noise reduction systems for CIs provide little to no benefit for understanding speech with babble noise.
CI manufacturers have shown great enthusiasm about our successful proof-of-concept of our algorithm.
Nevertheless, before commercialization, CI manufacturers want reductions in the computational power
required for the algorithm. As CI processors minimize computational processing in order to maximize battery
life, it is important to minimize the additional computations required by SEDA. When using SEDA as a front-
end for a CI processing strategy (as is the case with our iPhone prototype), redundancy in the required
calculations result in increased computations and latency. Specifically, SEDA decomposes the input signal into
multiple channels, removes the background babble, and then reassembles them into a single waveform. This
waveform is then fed into a CI which again decomposes the signal into multiple channels. Integrating SEDA
into the signal processing chain will save computational processing as the signal would only need to be
decomposed once and would not need to be reassembled. Additionally, although SEDA is highly successful in
typical speech in noise tests, CI manufacturers emphasized the importance of evaluating SEDA in more
realistic environments.
Two specific aims will address the requirements for commercialization by the CI manufactures:
reducing the computational requirements by integrating SEDA into a sound processing algorithm and
evaluating SEDA in realistic environments.
项目概要/摘要
当听力受损的听众得到助听器 (HA) 或人工耳蜗 (CI) 的适当帮助时,
他们通常能够在安静的环境中舒适地进行对话。然而,在团体中
环境,例如大型家庭聚餐、餐厅或其他多人交谈的环境
同时,听力受损的听众很难参与对话,并且经常
撤回或避免这种情况。因此,将算法实施到 HA 或 CI 中将非常有益
从信号中消除背景说话者(“胡言乱语”),以减少听力障碍者的聆听努力
倾听者并让他们像在安静的环境中一样交谈。尽管 HA 和 CI 经常
结合降噪算法,当背景嘈杂时这些算法不起作用。这
消除胡言乱语的问题涉及将语音与语音分开。因此,光谱特性
信号和噪声极其相似。
尽管存在这些挑战,我们还是开发了一种极其有效的算法,名为 SEDA 来消除
背景喋喋不休。 SEDA 原型在 iPhone 上实现,并对 10 位 CI 用户进行了评估。
SEDA 在所有测试的信噪比 (SNR) 下提高了对背景说话者语音的理解;
平均而言,babble 中的单词理解能力提高了 31 个百分点。相比之下,最先进的
CI 的降噪系统对于理解含杂音的语音几乎没有任何帮助。
CI 制造商对我们算法的成功概念验证表现出了极大的热情。
然而,在商业化之前,CI 制造商希望降低计算能力
算法所需的。 CI 处理器最小化计算处理以最大化电池
寿命,重要的是尽量减少 SEDA 所需的额外计算。当使用 SEDA 作为前端时
CI 处理策略结束(就像我们的 iPhone 原型一样),所需的冗余
计算会导致计算量和延迟增加。具体来说,SEDA将输入信号分解为
多个通道,去除背景杂音,然后将它们重新组合成单个波形。这
然后将波形输入 CI,CI 再次将信号分解为多个通道。集成SEDA
进入信号处理链将节省计算处理,因为信号只需要
分解一次,不需要重新组装。此外,尽管 SEDA 在
噪音测试中的典型言论,CI厂商更强调评估SEDA的重要性
现实环境。
两个具体目标将满足 CI 制造商的商业化要求:
通过将 SEDA 集成到健全的处理算法中来减少计算需求
在现实环境中评估 SEDA。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David M Landsberger其他文献
David M Landsberger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David M Landsberger', 18)}}的其他基金
Stimulating the cochlear apex without longer electrodes
无需较长电极即可刺激耳蜗尖部
- 批准号:
10287179 - 财政年份:2021
- 资助金额:
$ 78.76万 - 项目类别:
Stimulating the cochlear apex without longer electrodes
无需较长电极即可刺激耳蜗尖部
- 批准号:
10461862 - 财政年份:2021
- 资助金额:
$ 78.76万 - 项目类别:
Reduction in spread of excitation as predictor multi-channel spectral resolution
减少激励扩散作为预测器多通道光谱分辨率
- 批准号:
8727506 - 财政年份:2012
- 资助金额:
$ 78.76万 - 项目类别:
Reduction in spread of excitation as predictor multi-channel spectral resolution
减少激励扩散作为预测器多通道光谱分辨率
- 批准号:
8915669 - 财政年份:2012
- 资助金额:
$ 78.76万 - 项目类别:
Reduction in spread of excitation as predictor multi-channel spectral resolution
减少激励扩散作为预测器多通道光谱分辨率
- 批准号:
8810293 - 财政年份:2012
- 资助金额:
$ 78.76万 - 项目类别:
Reduction in spread of excitation as predictor multi-channel spectral resolution
减少激励扩散作为预测器多通道光谱分辨率
- 批准号:
8373787 - 财政年份:2012
- 资助金额:
$ 78.76万 - 项目类别:
Using current-focusing and current-steering to increase the number of effective c
使用电流聚焦和电流引导来增加有效电流的数量
- 批准号:
8247244 - 财政年份:2009
- 资助金额:
$ 78.76万 - 项目类别:
Using current-focusing and current-steering to increase the number of effective c
使用电流聚焦和电流引导来增加有效电流的数量
- 批准号:
7851163 - 财政年份:2009
- 资助金额:
$ 78.76万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 78.76万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 78.76万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 78.76万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 78.76万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 78.76万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 78.76万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 78.76万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 78.76万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 78.76万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 78.76万 - 项目类别:
Continuing Grant