Tissue Hypoxia and Topical Oxygen Therapy in Ocular Mustard Gas Injury
眼芥子气损伤的组织缺氧和局部氧疗
基本信息
- 批准号:10630652
- 负责人:
- 金额:$ 24.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAlkaliesAnimalsApoptosisAtmosphereBlindnessBullaCataractCellsChemical InjuryChemical WeaponsCorneaCorneal NeovascularizationDataDefectEdemaEmulsionsEnabling FactorsEngineeringEpithelial CellsEquipmentEventExposure toEyeEye InjuriesEye diseasesEyelid structureFibrosisFluoresceinGoalsGrantHIF1A geneHistologicHumanHypoxiaHypoxia Inducible FactorIn VitroInflammationInflammatoryInjectionsInjuryKnowledgeLeucocytic infiltrateMechlorethamineMediatingMucous MembraneMusMustard GasOxidative StressOxygenOxygen Therapy CarePainPenetrationProductionProliferatingResearchRoleSignal TransductionSkin TissueStainsStructure of parenchyma of lungTemperatureTestingTherapeuticTimeTissuesTopical applicationTrainingTreatment EfficacyVisual impairmentWorkchemical threatcorneal epitheliumcytokineeffective therapyefficacy evaluationexposed human populationhealingin vivolimbalmass casualtymouse modelneovascularizationnerve supplynovelportabilitypressureslit lamp imagingstem cellstargeted treatmenttranscription factorweapons of mass destruction
项目摘要
Mustard gas (MG, most commonly sulfur mustard and nitrogen mustard) is a chemical weapon of mass
destruction and a vesicating agent capable of penetrating mucous membranes. Ocular exposure to MG leads
to eyelid edema, conjunctival injection and chemosis, corneal epithelial defect, opacification, and
neovascularization (NV), limbal stem cell deficiency, and cataract formation, resulting in pain, visual
impairment, and blindness. Despite numerous studies in human and animals, the underlying mechanisms of
MG eye injury are not clear, and to date there is no targeted treatment. Hypoxia and inflammation are
intertwining mechanisms mediating tissue damage after burn including chemical injuries. Tissue hypoxia is an
important mechanism underlying skin and lung tissue damages after MG exposure. In our preliminary study,
we found that ocular alkali burn leads to significant intraocular tissue hypoxia, resulting in the activation of
hypoxia-inducible factor (HIF) signaling, oxidative stress, and inflammation in vivo. In addition, exposure of
human corneal epithelial cells to nitrogen mustard promotes HIF signaling in vitro. However, the role of tissue
hypoxia in ocular MG exposure in vivo has not been studied. We have engineered a perfluorodecalin-based
supersaturated oxygen emulsion (SSOE) as a topical treatment to deliver high levels (over 4 times of
atmospheric levels) of oxygen to the eye. In our preliminary work, we found that a single topical application of
SSOE at time of acute alkali burn drastically reduces intraocular hypoxia and dampens HIF signaling, oxidative
stress, and inflammation. SSOE accelerates corneal epithelial healing and ameliorates corneal opacification,
cataract formation, and tissue fibrosis in vivo. Our overarching goal in this application is to identify the
role of tissue hypoxia and inflammation in MG eye injury and to determine the efficacy of SSOE in
treating MG-related ocular damages. We have established a novel mouse model of ocular nitrogen mustard
exposure and plan to test the following aims: In Specific Aim 1, we hypothesize that tissue hypoxia occurs
rapidly after MG exposure, and we will determine intraocular oxygen levels, HIF signaling, oxidative stress, and
tissue inflammation after ocular nitrogen mustard exposure in vivo; In Specific Aim 2, we hypothesize that
SSOE treatment will reverse tissue hypoxia and reduce inflammation after MG exposure, and will determine
the efficacy of SSOE application in mitigating nitrogen mustard eye injury by assessing tissue hypoxia,
oxidative stress, leukocyte infiltration, tissue fibrosis, corneal opacification/NV, and cataract formation in vivo.
Successful completion of this proposal will not only fill in the knowledge gap in MG injury-related hypoxia
research but provide first proof-of-concept data in demonstrating the therapeutic potential of SSOE as a novel
topical treatment for acute MG exposure. Given that SSOE is formulated to be portable in a small canister and
stable at room temperature, it can potentially be stockpiled and rapidly deployed in a mustard gas attack with
mass casualty and provide countermeasure against chemical threats currently without any treatment options.
芥末气(mg,最常见的是硫芥末酱和氮芥末)是质量的化学武器
破坏和能够穿透粘膜的囊泡剂。眼部暴露于MG铅
在眼睑水肿,结膜注射和化学,角膜上皮缺陷,不透明和
新生血管化(NV),边缘干细胞缺乏症和白内障形成,导致疼痛,视觉
损害和失明。尽管在人类和动物中进行了许多研究,但
MG眼损伤还不清楚,至今还没有针对性的治疗。缺氧和炎症是
燃烧后介导组织损伤的交织机制,包括化学损伤。组织缺氧是
毫克暴露后皮肤和肺组织损害的重要机制。在我们的初步研究中
我们发现眼碱燃烧会导致眼内组织缺氧,导致激活
缺氧诱导因子(HIF)信号传导,氧化应激和体内炎症。另外,暴露
人的角膜上皮细胞至氮芥末可在体外促进HIF信号传导。但是,组织的作用
尚未研究眼部MG暴露体内的缺氧。我们已经设计了一个基于全氟的
过饱和氧乳液(SSOE)作为局部处理,可提供高水平(超过4倍
大气水平)眼睛的氧气。在我们的初步工作中,我们发现
急性碱燃烧时的SSOE大大降低了眼内缺氧并抑制HIF信号传导,氧化
压力和炎症。 SSOE加速了角膜上皮愈合并改善角膜的厌恶,
白内障形成和体内组织纤维化。我们在此应用程序中的总体目标是确定
组织缺氧和炎症在MG眼损伤中的作用,并确定SSOE在
治疗与MG相关的眼部损伤。我们已经建立了一种新型的眼氮芥末模型
暴露并计划测试以下目标:在特定的目标1中,我们假设发生组织缺氧
MG暴露后迅速,我们将确定眼内氧气水平,HIF信号传导,氧化应激和
眼部氮芥菜在体内暴露后的组织炎症;在特定目标2中,我们假设
SSOE治疗将逆转组织缺氧并减少毫克暴露后的炎症,并确定
通过评估组织缺氧,SSOE应用在减轻氮芥末损伤方面的功效,
体内氧化应激,白细胞浸润,组织纤维化,角膜糊状/NV和白内障形成。
该提案的成功完成不仅会填补与MG伤害相关的缺氧的知识差距
研究但提供了概念验证数据,以证明SSOE作为一种新颖的治疗潜力
急性MG暴露的局部治疗。鉴于SSOE被配制为在小罐中便携
在室温下稳定,它可能会被储存并迅速部署在芥末气攻击中
大规模伤亡,并为目前没有任何治疗选择的化学威胁提供对策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jia Yin其他文献
Jia Yin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jia Yin', 18)}}的其他基金
Mechanisms of Neuroregulation of Corneal Angiogenesis
角膜血管生成的神经调节机制
- 批准号:
10186760 - 财政年份:2020
- 资助金额:
$ 24.63万 - 项目类别:
Mechanisms of Neuroregulation of Corneal Angiogenesis
角膜血管生成的神经调节机制
- 批准号:
10649841 - 财政年份:2020
- 资助金额:
$ 24.63万 - 项目类别:
Mechanisms of Neuroregulation of Corneal Angiogenesis
角膜血管生成的神经调节机制
- 批准号:
10469573 - 财政年份:2020
- 资助金额:
$ 24.63万 - 项目类别:
相似国自然基金
普通拟杆菌通过NNMT促进烟酸盐代谢产生葫芦巴碱抑制BMAL1/CXCL2/CXCR2信号介导的中性粒细胞老化来减轻脓毒症急性肾损伤的作用及机制研究
- 批准号:82372169
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于M2型巨噬细胞外泌体构建负载异钩藤碱的新型纳米载药系统靶向调控急性肺损伤微环境抑制肺纤维化的作用及机制研究
- 批准号:82260808
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于化学信息学挖掘抗急性淋巴细胞白血病活性吲哚生物碱及其作用机制
- 批准号:32260108
- 批准年份:2022
- 资助金额:33.00 万元
- 项目类别:地区科学基金项目
高效低毒Asterriquinones生物碱的多样性发掘与抗急性骨髓性白血病活性研究
- 批准号:22207020
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于化学信息学挖掘抗急性淋巴细胞白血病活性吲哚生物碱及其作用机制
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Unraveling the corneal and retinal mechanisms of chemical injury
揭示化学损伤的角膜和视网膜机制
- 批准号:
10882069 - 财政年份:2023
- 资助金额:
$ 24.63万 - 项目类别:
Soluble epoxide hydrolase and epoxide fatty acid involvement in corneal injury after ammonia exposure: Mechanisms of injury and potential therapeutics using sEH inhibitors and biostable EpFA mimics.
可溶性环氧化物水解酶和环氧化物脂肪酸参与氨暴露后角膜损伤:损伤机制和使用 sEH 抑制剂和生物稳定 EpFA 模拟物的潜在治疗方法。
- 批准号:
10708436 - 财政年份:2023
- 资助金额:
$ 24.63万 - 项目类别:
The regulation of renal tubular transport by cannabinoid receptor type 1 (CB1R) and its endogenous lipid ligands
1型大麻素受体(CB1R)及其内源性脂质配体对肾小管转运的调节
- 批准号:
10588113 - 财政年份:2023
- 资助金额:
$ 24.63万 - 项目类别:
Targeting Citrullination in Ocular Chemical Injury
针对眼部化学损伤的瓜氨酸化
- 批准号:
10206486 - 财政年份:2021
- 资助金额:
$ 24.63万 - 项目类别:
Targeting Citrullination in Ocular Chemical Injury
针对眼部化学损伤的瓜氨酸化
- 批准号:
10459390 - 财政年份:2021
- 资助金额:
$ 24.63万 - 项目类别: